
 

AC3 project has received funding from European Union’s Horizon Europe research and innovation 
programme under Grant Agreement No 101093129. 

 

 

 

 

 

 

D.4.1 Initial report on mechanisms that enable green-

oriented zero touch management of CECC resources - 

Initial 
 

 

Document Summary Information 

Project Identifier   HORIZON-CL4-2022-DATA-01. Project 101093129  

Project name Agile and Cognitive Cloud-edge Continuum management 

Acronym AC3 

Start Date  January 1, 2023 End Date  December 31, 2025  

Project URL  www.ac3-project.eu  

Deliverable  D4.1. Initial report on mechanisms that enable green-oriented zero touch 
management of CECC resources - Initial 

Work Package  WP4 

Contractual due date 30th June 2024 Actual submission date 30th June 2024 

Type  R – Document, Report Dissemination Level  PU – Public 

Lead Beneficiary  IBM   

Responsible Author  Amadou Ba (IBM) 

Contributors  Amadou Ba (IBM), Diego Tsutsumi (IBM), Adlen Ksentini (EUR), Ayoub Mokhtari (EUR), 
Mohamed Mekki (EUR), Sofiane Messaoudi (EUR), Kostas Ramantas (IQU), Ioannis 

http://www.ac3-project.eu/


 
D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources 

 
 

 

© AC3 2023  Page | 2  

Zenginis (IQU), Ben Capper (RHT), Ray Carroll (RHT), Ryan Jenkins (RHT), Christos 
Verikoukis (ISI/ATH), Elias Dritsas (ISI/ATH), Vasilis Avgerinos (ISI/ATH), Athanasios 
Kordelas (CTX), George Tsolis (CTX), John Beredimas (CTX), Alabi Rasheed (FIN), 
Ibrahim Afolabi (FIN), Vrettos Moulos (UPR), Dimitrios Amaxilatis (SPA), Nikos Tsironis 
(SPA), Ali Nikoukar (ION), Maria Tsoli (UPR), Giannis Koulopoulos (UPR), Giannis 
Mpekos (UPR), Podimata Anna (UPR) 

Peer reviewer(s) Ibrahim Afolabi (FIN), Nikos Tsironis (SPA) 

 

  



 
D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources 

 
 

 

© AC3 2023  Page | 3  

Revision history (including peer reviewing & quality control) 

Version Issue Date 
% 

Complete 
Changes Contributor(s) 

V1.0 04/03/2024 5 Initial structure (ToC) All partners 

V2.0 15/04/2024 50 Initial contributions Section 4 (EUR, CTX, UPR, SPA, 
RHT) 

Section 5.1 (FIN) 

Section 5.2 (SPA) 

Section 5.3.1 (IBM) 

Section 5.3.2 (EUR) 

Section 5.3.3 (IBM) 

Section 5.3.4 (ATH/ISI) 

Section 6 (IQU) 

Section 7 (RHT) 

V3.0 07/05/2024 90 Final contributions Section 1 (IBM) 

Section 2 (IBM) 

Section 3 (IBM) 

Section 4 (EUR, CTX, UPR, SPA, 
RHT) 

Section 5.1 (FIN) 

Section 5.2 (SPA) 

Section 5.3.1 (IBM) 

Section 5.3.2 (EUR) 

Section 5.3.3 (IBM) 

Section 5.3.4 (ATH/ISI) 

Section 6 (IQU) 

Section 7 (RHT) 

Section 8 (IBM) 

V4.0 16/05/2024 95 Internal review Ibrahim Afolabi (FIN), Nikos 
Tsironis (SPA) 

V4.1 30/05/2024 98 Technical Manager review Adlen Ksentini (EUR) 

V5.0 15/06/2024 100 Project Coordinator review  Christos Verikoukis (ATH/ISI) 

Disclaimer 

The content of this document reflects only the author’s view. Neither the European Commission nor the HaDEA 
are responsible for any use that may be made of the information it contains. 

While the information contained in the documents is believed to be accurate, the authors(s) or any other 
participant in the AC3 consortium make no warranty of any kind with regard to this material including, but not 
limited to the implied warranties of merchantability and fitness for a particular purpose. 



 
D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources 

 
 

 

© AC3 2023  Page | 4  

Neither the AC3 consortium nor any of its members, their officers, employees or agents shall be responsible or 
liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein. 

Without derogating from the generality of the foregoing neither the AC3 Consortium nor any of its members, 
their officers, employees or agents shall be liable for any direct or indirect or consequential loss or damage 
caused by or arising from any information advice or inaccuracy or omission herein. 

 

Copyright message 

© AC3 Consortium. This deliverable contains original unpublished work except where clearly indicated otherwise. 
Acknowledgement of previously published material and of the work of others has been made through 
appropriate citation, quotation or both. Reproduction is authorised provided the source is acknowledged. 

 

 

 

  



 
D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources 

 
 

 

© AC3 2023  Page | 5  

Table of Contents 

1 Executive Summary ........................................................................................................................................ 10 
2 Introduction .................................................................................................................................................... 11 

2.1 Scope .......................................................................................................................................................... 11 
2.2 Target Audience ......................................................................................................................................... 11 
2.3 Mapping AC3 Outputs ................................................................................................................................ 11 
2.4 Deliverable Overview and Report Structure .............................................................................................. 14 

3 AC3 Architecture and WP4 Components ....................................................................................................... 15 
4 Resource Discovery and Monitoring .............................................................................................................. 17 

4.1 Overview of the Monitoring System for the CECCM ................................................................................. 17 
4.2 Unified Monitoring Data Model and Monitoring Data Collection ............................................................. 17 

4.2.1 Monitoring Data ................................................................................................................................. 17 
4.2.2 Enhanced Resource Profile Schema ................................................................................................... 17 
4.2.3 Metrics for Monitoring Data Processing Components ...................................................................... 20 
4.2.4 Data Collection ................................................................................................................................... 21 
4.2.5 Data Collection Interfaces for Networking......................................................................................... 21 

4.3 Network Monitoring ................................................................................................................................... 22 
4.3.1 State-of-the-Art on Data Collection Interfaces for Computing .......................................................... 23 

4.4 Resource Discovery, Unified Resource Discovery Communication ........................................................... 25 
4.4.1 Resource Discovery ............................................................................................................................ 26 

5 AI/ML Models for Prediction and Resource Management ............................................................................ 27 
5.1 State-of-the-Art .......................................................................................................................................... 27 
5.2 Data, Computing and Networking Metrics ................................................................................................ 27 
5.3 AI/ML to Predict Infrastructure Usage ....................................................................................................... 30 

5.3.1 State-of-the-Art .................................................................................................................................. 30 
5.3.2 XAI-Enabled Fine Granular Resources Autoscaler .............................................................................. 31 
5.3.3 XAI for Prediciton of Infrastructure Usage ......................................................................................... 36 
5.3.4 GNN for Spatio-Temporal Prediction ................................................................................................. 44 

6 Decision Enforcement with Reinforcement Learning .................................................................................... 49 
6.1 Reinforcement Learning for Resource Allocation ...................................................................................... 49 

6.1.2 Future Work on Reinforcement Learning for Energy-Aware Resource Allocation ............................ 56 
7 Network Programmability .............................................................................................................................. 57 

7.1 State-of-the Art on Network Programmability .......................................................................................... 57 
7.1.1 Software Defined Networking ............................................................................................................ 57 
7.1.2 Kubernetes-based Network Orchestration ........................................................................................ 58 

7.2 Proposed Hybrid Architecture for Multi-layer Network Programmability ................................................ 59 
7.2.1 SD-WAN .............................................................................................................................................. 61 
7.2.2 Kubernetes-based Network Orchestration ........................................................................................ 67 

8 Conclusions ..................................................................................................................................................... 78 
9 References ...................................................................................................................................................... 80 
10 Useful links ..................................................................................................................................................... 85 
11 Annexes .......................................................................................................................................................... 86 

11.1 Annexe A – SD-WAN Northbound API Swagger Definition ........................................................................ 86 
 

 



 
D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources 

 
 

 

© AC3 2023  Page | 6  

 

List of Figures 

Figure 1: High level architecture of AC3 ................................................................................................................. 15 

Figure 2: The management plane of AC3 ............................................................................................................... 16 

Figure 3: ADC metrics exporter or observability exporter (COE) ........................................................................... 21 

Figure 4: ADC metrics exporter or observability exporter (COE) ........................................................................... 22 

Figure 5: Skupper architecture ............................................................................................................................... 22 

Figure 6:  Illustration of submariner capability ...................................................................................................... 23 

Figure 7: Zero-touch service management framework architecture..................................................................... 32 

Figure 8: Shapley values provided by the SHAP method ....................................................................................... 34 

Figure 9: Highest values of CPU and RAM allocated to an instance of the applications in relation to the number 
of concurrent clients .............................................................................................................................................. 35 

Figure 10: Mean response time in relation to the number of concurrent clients ................................................. 36 

Figure 11: TFT architecture for prediction ............................................................................................................. 37 

Figure 12: Metrics used .......................................................................................................................................... 40 

Figure 13: Latency prediction results (mean) ........................................................................................................ 41 

Figure 14: Explainability for the predicted latency (mean).................................................................................... 42 

Figure 15: Latency prediction results (p75) ........................................................................................................... 42 

Figure 16: Explainability for the predicted latency (p75) ....................................................................................... 43 

Figure 17: Latency prediction results (p95) ........................................................................................................... 43 

Figure 18: Explainability for the predicted latency (p95) ....................................................................................... 44 

Figure 19: Model architecture................................................................................................................................ 46 

Figure 20: Aggregation layer .................................................................................................................................. 46 

Figure 21: Mixer Layer ............................................................................................................................................ 47 

Figure 22: System model ........................................................................................................................................ 50 

Figure 23: RL system ............................................................................................................................................... 53 

Figure 24: Average CPU efficiency for service type I ............................................................................................. 54 

Figure 25: Average CPU efficiency for service type II ............................................................................................ 54 

Figure 26: Average memory usage efficiency for service type II ........................................................................... 55 

Figure 27: Average memory usage efficiency for service type IV .......................................................................... 55 

Figure 28: Average delay for service type III .......................................................................................................... 56 

Figure 29: Software Defined Networking and Container-Based Networking working together ........................... 60 

Figure 30: CECC SD-WAN Overall Architecture ...................................................................................................... 61 



 
D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources 

 
 

 

© AC3 2023  Page | 7  

Figure 31: Application aware routing ..................................................................................................................... 63 

Figure 32: Service traffic identifier creation process ............................................................................................. 64 

Figure 33: Overlay creation time ............................................................................................................................ 66 

Figure 34: E2E overlay creation time ..................................................................................................................... 66 

Figure 35: SD-WAN edge CPU consumption .......................................................................................................... 67 

Figure 36: SD-WAN edge RAM consumption ......................................................................................................... 67 

Figure 37: Network management operator ........................................................................................................... 68 

Figure 38: Skupper configuration ........................................................................................................................... 72 

Figure 39: Submariner configuration ..................................................................................................................... 73 

Figure 40: Multiple skupper routers ...................................................................................................................... 74 

Figure 41: Multiple gateways per cluster ............................................................................................................... 75 

Figure 42: Network monitoring .............................................................................................................................. 77 

List of Tables 

Table 1: Adherence to AC3 GA Deliverable & Tasks Descriptions .......................................................................... 11 

Table 2: List of the actual counters ........................................................................................................................ 28 

Table 3: Results ...................................................................................................................................................... 48 

Table 4: SLA requirements and Gn parameters ..................................................................................................... 51 

Table 5: SAC parameters ........................................................................................................................................ 53 

 

 

  



 
D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources 

 
 

 

© AC3 2023  Page | 8  

Glossary of terms and abbreviations used 

Abbreviation/Term Description 

AC3 Agile and Cognitive Cloud-edge Continuum  

ADC Application Delivery Controller 

AI Artificial Intelligence 

API Application Programming Interface 

ADM Application Delivery Management 

CECC Cloud Edge Computing Continuum 

CECCM Cloud Edge Computing Continuum Manager 

CNI Container Network Interface 

CPE Customer Platform Engineering 

CPX Container Proxy 

COE Customer Observability Exporter 

CRD Customer Resource Descriptor 

DL Deep Learning 

DRL Deep Reinforcement Learning 

GNN Graph Neural Network 

ISP Internet Service Providers 

LCM Life Cycle Management 

LIME Local Interpretable Model-agnostic Explanations 

LMS Local Management System 

LSTM Long Short-Term Memory 

ML Machine Learning 

NBI Northbound Interface 

OCM Open Cluster Management 

PaaS Platform as a Service 

QoS Quality of Service 

QoE Quality of Experience 

RL Reinforcement Learning 



 
D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources 

 
 

 

© AC3 2023  Page | 9  

SBI Southbound Interface 

SDN Software Defined Network 

SD-WAN Software Defined Wide Area Network 

SHAP SHapley Additive exPlanations 

SLA Service Level Agreements 

SLO Service Level Objectives 

SNMP Simple Network Management Protocol 

SR Segment Routing 

TFT Temporal Fusion Transformer 

TLS Transport Layer Security 

VoIP Voice over Internet Protocol 

VPN Virtual Private Network 

VNF Virtual Network Function 

VRF Virtual Routing and Forwarding 

XAI Explainable AI 

 
 

 
 



 
D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources 

 
 

 

© AC3 2023  Page | 10  

1 Executive Summary  

The transition from traditional IT to the CECC concept requires the creation of frameworks and resource 
management capabilities capable of efficiently managing and continuously optimizing resources. This serves as 
the core impetus behind the AC3 project, which aims to introduce a pioneering CECC management framework 
enabling scalability, agility, and efficiency in resource management. At the heart of the AC3 project lies the 
CECCM, a fundamental component facilitating the advancement of application LCM and configuration through 
self-management and self-configuration, all while satisfying the SLA. To realize this objective, AC3 considers 
recent breakthroughs in AI and ML, particularly eXplainable AI (XAI), to deliver an efficient LCM system for CECC 
resources, ensuring minimal latency and SLA compliance. WP4 is the key pillar of AC3. It is the place where AI/ML 
models for resource management are developed (T4.2), and where LCM decisions for resource management are 
enforced (T4.3), both enabled by the data emanating from the resource discovery and monitoring of the 
federated infrastructures (T4.1). Additionally, Network Programmability components are developed in this WP4 
to ensure dynamic and flexible traffic management for microservices in the CECC infrastructure. This is achieved 
while maintaining application SLAs through dynamic updates of routes and resources (T4.4).  This deliverable 
outlines our initial efforts regarding WP4, focusing on resource management across CECC. To set the context, we 
provide an overview of the monitoring system, highlighting the importance of collecting relevant metrics to build 
the AI-based LCM. The primary areas of innovation for the proposed mechanisms begin with a unified monitoring 
data model, emphasizing the need for a comprehensive schema that captures dynamic resource states (CPU, 
memory, storage), classifies resources by type (edge, cloud), tracks energy sources, and determines geographical 
locations. Then, we architect a mechanism for collecting the monitored data. We explain the data collection 
processes for both computing and networking. Specifically, we provide data including various performance, 
health, and usage metrics at the network and application levels. We list the operational and application-specific 
metrics required for the AI-based LCM. Furthermore, we describe the resource discovery mechanism, focusing 
on the interaction between resource exposure and discovery (T4.1).  

After data collection, we develop efficient approaches for resource management (T4.2). The first combines 
XGBoost with SHAP for explainable detection of SLA non-compliance. The second performs spatio-temporal 
prediction of infrastructure usage with the combination of a Graph Neural Network and a sequence-to-sequence 
learner. The third is an explainable prediction approach that predicts latency and identifies the influence of 
various features on the prediction. It leverages the Temporal Fusion Transformer (TFT). The TFT is an attention-
based architecture providing multi-horizon forecasting and interpretability. The advantage of TFT lies in its multi-
horizon prediction, providing users with access to estimates across the entire path, allowing them to optimize 
their actions at multiple steps in the future (T4.2). For example, after latency prediction, users can assess SLA 
compliance and identify potential responsible metrics like CPU or memory or both, in case of non-compliance. 
This facilitates implementing corrective measures, such as increasing CPU, memory, or both (T4.3). After 
infrastructure availability prediction, a mechanism for runtime management of microservices, such as resource 
autoscaling and/or duplication of micro-services has been developed (T4.3), we use an RL approach based on a 
Soft Actor-Critic (SAC) agent. This will allow for proactive orchestration of microservices based on the prediction 
results. Furthermore, we report our initial work on dynamic and flexible traffic management through Network 
Programmability (T4.4). With regard to Network Programmability, we focus on Software Defined Networking 
(SDN) and Container-Based Networking (CBN) (Kubernetes), where we provide the possibility for proactive and 
reactive network configuration. 

Major steps have been taken to develop and implement the fundamental building blocks required in WP4. These 
steps also lay the foundation for the remaining work in WP4 where the energy aspect will be integrated for the 
consolidation of both resource prediction and management mechanisms and realize the ultimate objective of 
green-oriented zero touch management of CECC resources. 
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2 Introduction  
2.1 Scope 

This document represents a public deliverable from AC3's WP4, offering insights into our ongoing progress, 
notable achievements, and the innovative AI-driven algorithms developed for resource management, with a 
strong focus on explainability. This deliverable reviews state-of-the-art monitoring systems, AI methodologies 
applied to infrastructure availability prediction and management, and advancements in Network 
Programmability. 

2.2 Target Audience 

This deliverable is tailored for stakeholders involved in AI for resource management across hybrid, multi-cloud, 
and cloud-edge environments. It details the implementation of innovative AI techniques for predicting 
infrastructure availability and managing resource usage effectively. 

2.3 Mapping AC3 Outputs 

The purpose of this section is to map AC3 Grant Agreement commitments, both within the formal Deliverable 
and Task description, against the project’s respective outputs and the work performed. 

Table 1: Adherence to AC3 GA Deliverable & Tasks Descriptions 

AC3 GA 
Component 

Title 

AC3 GA Component 
Outline 

Respective Document 
Chapter(s) 

Justification 

DELIVERABLE 

D4.1. Initial report on mechanisms that enable green-oriented zero touch management of CECC resources 

TASKS    

Task 4.1 
Resource 
discovery and 
monitoring of 
the federated 
resources 

 

Define the necessary 
components and 
mechanisms to monitor 
and discover the federated 
CECC infrastructure 
resources, including the 
far edge.  

Determine the unified data 
model that needs to be 
exchanged between the 
different infrastructure 
providers. Two models will 
be considered, one for 
computing and one for 
networking.  

Section 4 

 

The main building blocks present 
in the GA and pertaining to Task 
4.1 have been addressed in 
Section 4. 
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The data model for 
computing will be 
extended to include the 
available computing 
resources and information 
on the energy model used 
by the DC (green or brown) 
and the best periods suited 
for energy. 

Defines a unified discovery 
resource communication 
model, allowing the 
CECCM to have a complete 
picture of available 
resources on the federated 
CEC.  

Define scalable data 
collection and monitoring 
for the federated 
resources that are in use 
by the CECCM. 

 

Task 4.2 AI/ML 
models for 
resource 
management 

 

 

Develop ML models in 
order to predict 
infrastructure usage, 
energy usage, and 
resource availability, 
including the far edge. 

ML algorithms will 
focusing mainly on using 
explainable models. 

State-of-the-art 
explainable models will be 
tested and used. 

 

Section 5 

The main building blocks present 
in the GA and pertaining to Task 
4.2 have been addressed in 
Section 5. The remaining work 
such as the consideration of the 
energy aspect will be addressed in 
the deliverable D4.2. 

Task 4.3 Green-
oriented LCM 
decisions for 
resource 
management  

 

Devise the necessary 
algorithms that take as 
inputs the resource 
prediction models to 
guarantee the 
application’s SLA. 

Section 6 

The main building blocks present 
in the GA and pertaining to Task 
4.3 have been addressed in 
Section 6. The remaining work will 
be addressed in the deliverable  
D4.2. 
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Devise the necessary 
algorithms that take as 
inputs the resource 
prediction to optimize 
resource usage for the 
federated CECC as well as 
the energy consumption. 

 The envisioned solutions 
could be based on multi-
objective optimization 
theory or ML- based 
decision-making solutions, 
such as Reinforcement 
Learning (RL). 

Devise algorithms that 
decide when to migrate 
microservice in order to 
optimize energy 
consumption. 

Build a knowledge 
mechanism in order to use 
the explainable models to 
evaluate the impacts of 
the considered decisions 
and derive their efficiency. 

Task 4.4 
Networking 
programmability 
of CECC 

 

Embrace two technologies 
SD-WAN and CFN, for 
WAN and edge, 
respectively. 

Define the necessary 
mechanisms to allow the 
programmability of both 
networks by selecting or 
extending existing SDN 
controllers. 

Update the CECCM 
northbound API to allow 
the application developer 
to request an update of 
the network connectivity.  

Improve the CECCM to 
allow for conflict-

Section 4, Section 7 

The main building blocks present 
in the GA and pertaining to Task 
4.4 have been addressed in 
Section 4, Section 7. 
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resolution solution that 
solves contradictory 
requests or requests that 
may impact other 
deployed applications. 

 

2.4 Deliverable Overview and Report Structure 

In this section, we provide the description of D4.1 structure, outlining the respective sections and their content.  

Section 3 presents the AC3 architecture and WP4 components with special focus on the four tasks.  

Section 4 presents the resource discovery and monitoring mechanism.  

Section 5 focuses on the AI/ML models for infrastructure usage prediction. Special consideration has been given 
to XAI.  

Section 6 provides the decision enforcement mechanism with particular emphasis on a reinforcement learning 
approach characterized by the Soft Actor-Critic for resource management. 

Section 7 is dedicated to Network Programmability. 

Section 8 concludes the deliverable D4.1 and introduces the next steps. 
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3 AC3 Architecture and WP4 Components 

Figure 1 presents the high-level architecture of AC3, composed of three planes and characterized by the User 
Plane, the Management Plane, and the Infrastructure Plane. 

• User Plane: it includes the Service Catalogue, the KPI Collection and Exposure mechanism, and the 
Ontology along with the Semantic-aware Reasoner. 

• Management Plane: it represents the fundamental aspect of the CECCM, which deals with the Data 
Management, the Applications and Resources Management, along with the Adaptation and Federation 
layer. 

• Infrastructure Plane: it is composed of cloud, edge and network resources. 

 

Figure 1: High level architecture of AC3 

Figure 2 illustrates the Management Plane showcasing the primary building blocks of WP4. These include the 
Resource Exposure, Discovery, and Broker alongside the Adaptation Gateway (T4.1), the AI-based CEC Resource 
Profile (T4.2), the Decision Enforcement (T4.3), and the Network (T4.4). In this deliverable, we delve into the 
inner workings of these blocks and present the approaches developed for their operationalization.  
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Figure 2: The management plane of AC3 

In T4.1 we develop the resource discovering and monitoring approach. T4.1 allows to get the data that will be 
used in the subsequent tasks. T4.2 is where the XAI approaches for infrastructure usage prediction will be 
developed. T4.3 addresses resource management using a reinforcement learning approach. T4.4 performs 
Network Programmability. 
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4 Resource Discovery and Monitoring  

We provide in this section an overview of the monitoring system, a unified monitoring data model, and the 
mechanism for collecting the monitored data. We explain the data collection processes for both computing and 
networking.  

4.1 Overview of the Monitoring System for the CECCM  

Monitoring is a critical component of the CECCM, particularly the AI-based LCM. Indeed, several components of 
the AI-based LCM rely on the monitoring information collected on the infrastructures as well as on the 
applications. First, the AI-based application profile uses the collected information on the applications, such as 
computing resources (CPU, memory, storage) consumption, energy consumed, traffic handled during a period, 
etc. Using this information, it is possible to build application profiles that will be employed by the AI-based LCM 
for application management and life-cycle optimization, such as scale down or up resources, or do migration. 
Second, the AI-based CEC resource profile uses the monitoring information to update the profile of CEC resource 
used by the CECCM. As CECCM uses resources from the federation, a profile describing in real-time the CEC 
resource status and profile is vital. The AI-based CEC resource profile will build on the monitoring information 
using the status of the CEC resource, that is, available computing resources (CPU, memory, storage), type of 
resource (edge, cloud, networks, far edge), type of energy used (green or brown), the covered locations, etc. All 
this information will also be used to predict the evolution of CEC resource usage. The AI-based LCM will also use 
the CEC resources for LCM decisions, such as the initial placement of applications, migration of applications for 
energy optimization, etc. Both profiles are combined for better resource optimization and SLA guarantee for 
applications. It should be noted that the monitoring components are activated once a CEC resource from the 
federation is selected by the CECCM (via the broker). The monitoring component is configured to consume the 
NBI as exposed by the LMS of the CEC resource.  

4.2 Unified Monitoring Data Model and Monitoring Data Collection 

4.2.1 Monitoring Data  

To effectively build the resource profile that leverages monitoring information to detail the status and 
characteristics of computing resources, a comprehensive schema that integrates all relevant attributes should 
be considered. This schema should not only capture the dynamic state of the resources such as CPU, memory, 
and storage but also classify the resources by type (e.g., edge, cloud), track the source of energy (green or brown), 
and pinpoint geographical locations. 

4.2.2 Enhanced Resource Profile Schema 

4.2.2.1 Schema Overview 

The schema is designed to provide a detailed snapshot of resource utilization and characteristics across different 
infrastructure types, energy sources, and locations. This will help in optimizing resource allocation, ensuring 
sustainability, and improving deployment strategies. 

{ 
   "resourceId": "unique_identifier", 
   "resourceType": { 
     "computing": "VM/Container/Server", 
     "infrastructure": "Edge/Cloud/Far Edge", 
     "network": "5G/Wi-Fi/Fiber" 
   }, 
   "location": { 
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     "latitude": "decimal_degrees", 
     "longitude": "decimal_degrees", 
     "region": "string" 
   }, 
   "energy": { 
     "type": "Green/Brown", 
     "consumption": "watts" 
   }, 
   "computingResources": { 
     "cpu": { 
       "totalCores": "number", 
       "usedCores": "number", 
       "usagePercentage": "percentage" 
     }, 
     "memory": { 
       "total": "bytes", 
       "used": "bytes", 
       "free": "bytes" 
     }, 
     "storage": { 
       "total": "bytes", 
       "used": "bytes", 
       "free": "bytes" 
     } 
   }, 
   "network": { 
     "bandwidth": { 
       "uplink": "Mbps", 
       "downlink": "Mbps" 
     }, 
     "latency": "milliseconds" 
   }, 
   "timestamp": "ISO 8601 format" 
 } 

The aforementioned schema represents an initial scenario, focusing on fundamental characteristics for 
monitoring implementation and resources. However, this schema is designed to be extensible, allowing for the 
inclusion of a wide range of parameters. These additional parameters can enhance the capabilities of AI-based 
LCM used for more precise matchmaking. By enriching the profile with detailed attributes, the LCM can more 
accurately identify and select the best-suited resources from within the federation. 

The parameters are organized into categories to enhance manageability and improve readability. Additionally, 
applications can retrieve only the relevant portion of the JSON file needed for a specific task. This approach not 
only reduces parsing time but also simplifies the process of querying parameters. 

The list of the parameters are:  

Resource Identification: 

• resourceId: A unique identifier for each resource to track different monitoring points. 

• resourceType: Classifies the resource into categories such as computing (e.g., VM, container), 
infrastructure type (e.g., edge, cloud), and network type. 

Location: 
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• Geographical data: Essential for distributed systems, particularly in edge computing, to optimize data 
routing and compliance with local regulations. 

Energy: 

• Type of energy: This is crucial for sustainability reports and operational optimizations, distinguishing 
between green (renewable) and brown (non-renewable) energy sources. 

• Consumption: Measures how much energy each resource uses, important for cost and environmental 
impact assessments. 

Computing Resources: 

• Details the allocation and usage of CPU, memory, and storage, which are critical for performance 
monitoring and capacity planning. 

Network Characteristics: 

• Bandwidth and latency: These metrics are vital for evaluating network health and performance, 
particularly in environments where real-time data processing is crucial. Another aspect of it is the 
necessity in some orchestrators for minimum latency (for example Kubernetes has such a limitation). 

Timestamp: 

• For time series analysis of resource utilization and tracking changes over time. 

On top of that, data will also be monitored by the NetScaler instance. The NetScaler instance refers to a specific 
deployment of NetScaler, which is a networking product. These data include various metrics related to 
performance, health, and usage on network and application level.  To gather and analyze NetScaler analytics 
information, the ADM, SNMP monitoring solutions, or custom scripts that query NetScaler APIs can be used. The 
monitored metrics include: 

• Application Performance: Monitoring application-specific metrics such as database query times, cache 
hit rates, response time, error rate, and transaction continuity can help ensure that applications hosted 
outside of the NetScaler appliance are performing as expected.  

• Response Time: This is the time taken from NetScaler to respond to a client request. It includes the time 
spent processing the request internally and communicating with backend servers. Monitoring response 
time ensures that programs are attentive to person requests. 

• Transaction Throughput: Transaction throughput measures the charge at which the NetScaler 
equipment procedures customer requests and forwards the information to backend servers. Monitoring 
transaction throughput allows discovering bottlenecks and guaranteeing that the NetScaler can handle 
the current workload efficiently. 

• Error Rates: tracks the frequency of errors occurring within the application infrastructure, such as 
connection failures, HTTP errors, SSL errors, etc. Common mistakes include HTTP errors (e.g., 404 Not 
Found) and application-particular errors. High error rates may suggest troubles with the application or 
backend servers. 

• SSL connections: For HTTPS traffic, monitoring SSL connections can provide insights into SSL handsake 
operations, certificate expiration, and SSL cipher usage. 

• SSL Handshake Time: ensure that SSL/TLS connections are installed quickly and efficiently.  

• Connection Persistence: monitoring connection stability guarantees that customer requests are 
consistently routed to the same backend server across more than one requests. This is vital for programs 
that require session endurance like shopping carts in e-commerce websites. 

• Additional generic metrics that can be used include: 

• Throughput: measures the amount of data passing through NetScaler at any time. 
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• Network latency: measures the time it takes for a data packet to travel from the client to the server and 
back. High latency can negatively affect the user experience, so monitoring and optimization is 
important. 

• Connection Stats: monitoring metrics like active connections, connection failures, connection retries, 
and connection timeouts can help identify potential communication issues. 

• Security metrics: monitoring security-related metrics such as DDoS attack attempts, intrusion attempts, 
and VPN usage can help identify and mitigate security threats. 

• Load Balancer Metrics: When the NetScaler appliance is used as a load balancer, monitoring metrics 
such as server health, request delivery, and server response time can help improve the performance of 
the load balancer. 

4.2.3 Metrics for Monitoring Data Processing Components  

The Data Processing components within the AC3 Data Management Platform as a Service (PaaS) are engineered 
to supply a dual set of metrics that are instrumental to the AC3 Monitoring Infrastructure. These metrics are 
pivotal for maintaining and enhancing the system's performance and reliability. By meticulously monitoring these 
metrics, AC3 can ensure that its Data Management PaaS remains robust, efficient, and responsive to the evolving 
needs of its users, thereby maintaining a high standard of service quality. 

4.2.3.1 Operational Metrics 

The initial category of metrics focuses on the operational aspects of data processing, specifically addressing the 
volume, velocity, and latency. Several specific metrics are gathered from the Data Processing components to 
provide a comprehensive view of the system's performance: 

• Volume: This metric measures the quantity of data processed by each component within a given 
timeframe. It helps in understanding the scale of data handling and is crucial for capacity planning and 
resource allocation. 

o Data Volume In: It measures the total volume of incoming data, providing an overview of the 
workload handled by the system. 

o Data Volume Out: Similar to Data Volume In, this metric measures the total volume of data 
outputted by the system, which is crucial for understanding the system's throughput. 

• Velocity: This metric gauges the speed at which data flows through the components, indicating how 
swiftly the system can process and transmit data. It's vital for evaluating the system's capability to handle 
real-time data processing and for optimizing throughput. 

o Data Points In: This metric tracks the number of individual data points entering the system, 
offering insights into the data influx rate. 

o Data Points Out: This indicates the number of data points successfully processed and sent out 
by the system, reflecting the output efficiency. 

• Latency: This measures the time delay in data processing within each component. Minimizing latency is 
essential for time-sensitive applications, ensuring that data processing and delivery are accomplished 
promptly. 

• Resource Usage: This metric encompasses the consumption of computational resources by each data 
processing component within the system. It's divided into several key sub-metrics. 

o CPU/Memory Usage for Broker, Mapper and Manipulator Add-ons: Monitoring the CPU and 
memory usage of specific components like Mapper and Broker add-ons is essential for resource 
optimization and ensuring the system's stability and performance. 

4.2.3.2 Application Metrics 

The second set of metrics is tailored for application developers. These metrics enable developers to monitor and 
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optimize the performance of their applications and also provide valuable feedback to AC3 on its operational 
performance: 

• Application Performance Metrics: Developers can track specific performance indicators related to their 
applications, such as response times, error rates, and transaction volumes. These metrics are crucial for 
diagnosing and improving application behavior. 

• Feedback Metrics: By providing feedback on the platform's performance, developers can aid AC3 in 
identifying potential improvements or enhancements, ensuring that the platform evolves to meet the 
users' needs effectively. 

4.2.4 Data Collection  

The principal mechanism for data collection is designed to be compatible with the Prometheus monitoring 
solution, a widely recognized tool for gathering and processing operational metrics. For Java-based components, 
Micrometer1 is utilized, offering a rich set of functionalities for monitoring application metrics. For Python-based 
components, werkzeug2 is employed, a toolkit that facilitates the creation of web applications and includes 
capabilities for monitoring and data collection. In addtition to the metrics collected by the data management 
module, Section 4.2.2.1 provides a list of network metrics accompanied by descriptive details, which will also be 
included in the data collection process. 

4.2.5 Data Collection Interfaces for Networking 

The Container Proxy (CPX) connects with Prometheus via the Customer Observability Exporter (COE) [1] or 
directly [2], as shown in Figure 3 and Figure 4. Grafana can be used in both cases to visualize the NetScaler metrics 
exported to Prometheus for easier interpretation and understanding. The diagram in Figure 3 shows a 
Prometheus and Grafana integration with NetScaler. COE collects CPX stats like the total hits to a server, HTTP 
request rate, ssl encryption-decryption rate, etc. from the the Application Delivery Controller (ADC) instances 
and holds them until the Prometheus server pulls the stats and stores them with a timestamp. 

 

Figure 3: ADC metrics exporter or observability exporter (COE) 

As already mentioned, NetScaler now supports directly exporting metrics to Prometheus. For example, CPU and 
memory usage metrics can be collected to know the NetScaler health. Similarly, metrics like the number of HTTP 
requests received per second or the number of active clients to monitor application health can be collected. 
NetScaler supports both the Prometheus pull and push mode. In pull mode, an administrator needs to configure 
a time series profile that Prometheus queries at regular intervals and pulls the metrics data directly without an 
exporter resource in between. With pull mode, read-only access can be enabled for a user without superuser 
privileges to export metrics to Prometheus.  

 
1 https://www.baeldung.com/micrometer 
2 https://werkzeug.palletsprojects.com/en/3.0.x/ 
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Figure 4: ADC metrics exporter or observability exporter (COE) 

4.3 Network Monitoring  

Skupper and Submariner can expose numerous types of network monitoring data related to their respective 
functionalities. Skupper provides monitoring capabilities tailored for inter-cluster connectivity with a Kubernetes 
environment. Administrators can leverage Prometheus with Skupper to monitor traffic metrics such as latency 
and packet loss within clusters. Integration with Prometheus allows for easy data collection and visualization of 
monitoring data, it gathers metrics from endpoints exposed by Skupper components, including routers and 
proxies. This allows administrators to gain insights into network performance and troubleshoot issues [3]. 

 

Figure 5: Skupper architecture 

Submariner specializes in facilitating secure communication and connectivity between Kubernetes clusters. 
Administrators can monitor the status of inter-cluster connections, tunnel health and endpoint availability 
through Prometheus’s integration with Submariner. This enables administrators to collect, analyze, and visualize 
monitoring data effectively. Prometheus scrapes metrics endpoints exposed by Submariner components, such 
as gateway nodes and controllers, facilitating real-time monitoring of network performance [4]. 

The current EURECOM's SD-WAN provides overlay monitoring for virtual tunnels established between edge 
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devices. Metrics such as latency and packet loss of overlay tunnels are exposed through the controller’s 
northbound API. 

 

 

Figure 6:  Illustration of submariner capability 

4.3.1 State-of-the-Art on Data Collection Interfaces for Computing  

In modern computing environments, the challenge of effectively monitoring diverse and dynamic infrastructures 
is significant, especially in AC3, where the goal is to register any resource to the federation. These environments 
often consist of a mix of virtual machines, containers, and cloud services, each generating vast amounts of data 
that must be managed and analyzed to ensure optimal performance and availability. Traditional monitoring 
solutions can struggle with the scalability and flexibility required to handle such heterogeneous and fluid systems 
efficiently. An example is Nagios3 or Zabbix4, that are designed around a central server architecture. In such 
(monolithic) setups, all monitored data must be sent to a single server that performs data processing and alert 
management. This centralization can become a bottleneck as the number of endpoints and the volume of data 
increase [5]. For instance, if an organization scales out its infrastructure rapidly, the central server can become 
overwhelmed with the sheer volume of incoming data, leading to delayed alerts, slow processing times, and 
potential data loss. Additionally, scaling these systems often requires significant manual intervention to add 
resources and optimize performance, which can be resource-intensive and error-prone. Another aspect that 
should be considered is that many older systems are configured to collect a standard set of metrics with limited 
ability to customize or extend what is monitored without significant effort [6]. For instance, tools like HP 
OpenView provide a range of metrics and monitoring capabilities, which might not cover all the metrics needed 
in a more modern, microservices-based application. Also, it fails to consider performance indicators as well as 
constraints/benchmarking evaluations that the resources may have [7]. 

An approach could be a decentralized system where each component or service independently monitors its 
metrics and reports back to a central aggregator. Although this can reduce the load on a single point and improve 
resilience, it can also complicate the configuration and maintenance of the overall system. Another approach is 
to employ a push-based model, where data is sent to the monitoring system in real-time. While this approach 

 
3 https://www.nagios.org/ 
4 https://www.zabbix.com/ 
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provides immediate data availability, it can overwhelm the monitoring system during peak times with high data 
inflow. Given the diversity of resource types and the unpredictable nature of their interconnections, the 
performance of a monitoring infrastructure can vary greatly. In such a landscape, Prometheus emerges as an 
excellent solution that leverages the strengths of different monitoring approaches while addressing their 
limitations. Prometheus utilizes a pull-based model to actively gather metrics from pre-configured endpoints at 
set intervals. This approach ensures that data collection remains manageable and current, while also minimizing 
the risk of data overload that is often associated with push-based systems. Furthermore, Prometheus is designed 
for high scalability, featuring robust service discovery that automatically adapts to changes within the 
environment, such as when endpoints are added or removed. Additionally, its storage system is adept at handling 
large volumes of time series data, which is particularly critical for complex use cases like those of AC3. Moreover, 
the Prometheus Query Language (PromQL) offers extensive capabilities for efficient data processing and 
aggregation, enhancing the monitoring system's overall functionality and responsiveness. 

4.3.1.1 Data Model using Computing Resources  

The data model and the corresponding monitoring setup provide a robust foundation for maintaining insight into 
the performance and health of a cluster, ensuring that the usage of computing resources is optimized, and issues 
can be proactively addressed even in scenarios where the infrastructure has edge or far edge nodes. 

In AC3 the objective is not only to develop a generic model, but it is also important to create an effective one for 
monitoring the infrastructure. This process should begin with a clear understanding of what is needed to be 
monitored in order to ensure the health, performance, and efficiency of a cluster. Monitoring objectives fall into 
the following broad categories: 

• Resource Usage: Tracking the consumption of CPU, memory, storage, and network resources is 
fundamental. These metrics help ensure that the cluster operates within its capacity and can forecast 
through the AC3 components when additional resources might be needed. 

• Performance Metrics: Measuring response times, throughput, error rates, and other performance 
indicators is essential to ensure that applications running on Kubernetes meet their SLA and provide 
a good user experience. 

• Health and Availability: Regular checks on the health of pods, services, and nodes help in identifying 
problems early. This includes monitoring the status of pods (e.g., running, waiting, or crashed) and 
nodes (e.g., ready, disk pressure, memory pressure), as well as the success rates of liveness and 
readiness probes. 

• Cluster State and Scalability: Understanding the state of the cluster involves monitoring the status 
and number of nodes, the distribution and health of workloads, and the effectiveness of scaling 
mechanisms. It also includes tracking the deployment statuses to ensure that the desired state 
matches the actual state, which is critical for deployments and stateful sets. 

• System Events and Logs: Collecting and analyzing logs and events can provide deeper insights into 
what is happening within the cluster. This includes understanding pod scheduling decisions, system 
errors, and significant state changes. 

 

Another layer of abstraction is the identification of key metrics critical for monitoring and managing clusters 
effectively. These metrics, essential for understanding both the current state and historical trends of cluster 
resources (important input for the AI-based LCM), are categorized into four groups: Pod Metrics, Node Metrics, 
Deployment and Stateful Set Metrics, and Resource Usage Metrics. Each category serves a unique purpose, 
providing insights that help in proactive management and optimization of the cluster.  
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The first characteristic is the Pod Metrics that are crucial for tracking the operational status and environment of 
the smallest deployable units in Kubernetes. Metrics such as kube_pod_info provide valuable metadata, 
including namespace and pod-specific labels, which are instrumental for contextual analysis across the cluster. 
The kube_pod_status_phase metric indicates the lifecycle phase of each pod (Pending, Running, Succeeded, 
Failed, Unknown), offering immediate visibility into potential disruptions or inefficiencies. Resource allocation 
metrics, kube_pod_container_resource_requests_cpu_cores and 
kube_pod_container_resource_limits_memory_bytes, detail the CPU and memory specifications requested and 
limited per container, aiding in resource management and capacity planning. 

Other key characteristic is the Node Metrics that give a broader perspective on the physical or virtual machines 
hosting the pods. kube_node_status_allocatable reveals the resources that are available for pod allocation, 
crucial for understanding resource availability and constraints. kube_node_status_capacity compares these 
figures against the total resources of a node, highlighting the consumption by system processes and the overall 
resource capacity. Final characteristic in this category is the kube_node_status_condition that provides real-time 
status conditions of nodes such as readiness and any existing issues, which is vital for maintaining the health and 
reliability of the cluster infrastructure. 

The third group is the Deployment and Stateful Set Metrics, where the kube_deployment_status_replicas and 
the kube_statefulset_replicas can be used where these metrics focus on the management and scaling aspects of 
applications. These metrics track the number of replicas deployed against the desired count, ensuring that the 
application scales correctly in response to demand and maintains resilience through adequate replication. 

Lastly, Resource Usage Metrics examine specifics of resource consumption at the container level, facilitated by 
cAdvisor integration with Prometheus. Metrics that are being monitored are 
container_cpu_usage_seconds_total and container_memory_usage_bytes that provide granular insights into 
the resource usage of individual containers. This data is invaluable for troubleshooting, optimizing resource 
utilization, and enforcing resource usage policies to prevent overutilization or underutilization. 

4.3.1.2 Data Model with Information on the Energy Type  

For energy type metrics, Kepler Exporter5 can be used. Kepler which stands for Kubernetes-based Efficient Power 
Level Exporter is designed to monitor and improve the energy efficiency of Kubernetes clusters. It allows us to 
collect and import energy consumption metrics. It exposes statistics from an application running in a Kubernetes 
cluster in a Prometheus-friendly format that can be scraped by any database that understands this format. 

Kepler exports several metrics to Prometheus, which are categorized by the type of energy consumed: 

• CPU Energy: kepler_container_core_joules_total tracks the energy used by the CPU cores. This measures 
the total energy consumption on CPU cores that a certain container has used. 

• DRAM Energy: kepler_container_dram_joules_total records the energy consumed by the DRAM. 

Information obtained from Kepler’s exporter can be used for profiling the resources with the Resource Profile 
Schema described in Section 4.2.2.1. For example, we need to convert the Joule-based metrics from Kepler (such 
as kepler_container_core_joules_total) into watts using Prometheus queries. We can also use the rate() function 
to calculate energy consumption per second (watts). 

4.4 Resource Discovery, Unified Resource Discovery Communication  

In today’s highly distributed network environments, efficient management of resources across the CECC is 
imperative. The AC3 project should address this need through innovative and sophisticated resource discovery 

 
5 https://sustainable-computing.io 
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mechanisms and unified resource communication strategies. These mechanisms are integral to optimizing 
resource allocation, enhancing system responsiveness, and ensuring robustness across diverse infrastructures, 
including cloud, edge, and far edge layers. 

Resource Broker module should comply with the Resource Profile Schema discribed in Section 4.2.2.1. In order 
to achive this, Resource Broker will provide to AI-based LCM module a JSON schema with the same format. The 
major challenge is to unify all data provided from resource discovery of different computing entities such as cloud 
providers or custom provisioned data centers. To address this challenge a simple yet highly effective solution 
would be to employ Kubernetes as the base building block where application will be deployed.  

4.4.1 Resource Discovery 

Having made the previous assumption about employing Kubernetes for applications to be deployed, state-of-
the-art tools can be used that have the added benefit of being production tested. 

Every time a new LMS is being provisioned, it will communicate its existence and the initial available resources 
to the Resource Discovery mechanism through an API call, also providing information on the real-time Resource 
Exposure endpoint. 

Resource Discovery module will communicate with the Resource Exposure of each LMS site, Kurbernetes 
clusters, in order to get information about the available resources. Each LMS’s Resource Exposure should have a 
Kubernetes Metrics server, which will be the Resource Exposure endpoint. There are several metrics that can be 
monitored through the Metrics server, such as: 

• Cluster state metrics: These metrics focus on the health and availability of Kubernetes items (nodes, 
pods, etc.) 

• Resource metrics: These metrics allow you to understand whether the cluster can handle its workloads 
and whether it can handle new loads. It is possible to track the use of resources at different levels of the 
cluster. This group includes the following metrics: memory requests, memory limits, allocatable memory, 
memory utilization, CPU requests, CPU limits, allocatable CPU, CPU utilization, and disk utilization. 

Resource Discovery will scrape all the available Resource Exposure endpoints of all LMS instances in order and 
then will communicate this information to the Resource Broker for transforming the data to the JSON format 
that was described previously in Section 4.2.2.1. 
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5 AI/ML Models for Prediction and Resource Management 
5.1 State-of-the-Art  

The integration of ML and DL into resource management has significantly transformed cloud and edge 
computing. These advancements are highlighted through a comprehensive analysis of research contributions, 
including studies on ML-centric resource management in cloud computing and the innovative applications of DRL 
in network resource optimization. In the domain of cloud computing, the shift towards ML-based dynamic 
resource management methods is primarily aimed at accommodating the variability and complexity of cloud 
workloads. In [8], the authors show the importance of developing advanced ML models to improve the accuracy 
of workload predictions, optimize the utilization of resources in virtual machines (VMs), and realize energy-
efficient data center operations. The future of cloud computing resource management, as suggested by [8], lies 
in the creation of sophisticated ML models and adaptive management strategies that can accurately predict and 
efficiently allocate resources. The adoption of ML and DL offers promising solutions by enabling intelligent 
prediction, adaptation, and optimization of network operations. This includes resource allocation, power 
distribution, and traffic management, automating decision-making processes to ensure more efficient, reliable, 
and energy-saving cloud and edge computing. The emergence of DRL as a powerful tool in resource management 
shows its ability to dynamically adjust and optimize resource allocation based on changing conditions and 
demands. Authors in [9] give an example of the application of DRL in managing system and network resources 
by translating complex allocation tasks into a learning problem. This approach not only matches the performance 
of state-of-the-art methods but also intuitively learns effective strategies through direct experience, marking a 
paradigm shift towards more flexible and efficient resource management methods. However, despite these 
advancements, several challenges remain, including the need for explainability of DRL models, scalability, 
decision-making complexity, and adaptability to different network environments. Addressing these challenges 
requires further research focused on developing sophisticated ML models that can provide accurate predictions, 
consider a wider range of resources, and implement adaptive management strategies. The application of ML and 
DRL in resource management represents a significant step towards more adaptive and intelligent systems 
capable of handling the complexities of modern computing environments. By enhancing the efficiency, 
adaptability, and performance of cloud and edge computing, ML-centric approaches are paving the way for the 
next generation of computing networks and systems. As the field continues to evolve, the development and 
integration of advanced ML models and solutions promise to unlock new levels of efficiency and innovation. 

5.2 Data, Computing and Networking Metrics  

In the context of managing resources within the CECCM system, AI and ML models will try to ensure efficient 
resource utilization. To achieve this, we rely on a comprehensive set of Key Performance Indicators (KPIs) that 
provide insights into various aspects of system performance, reliability, and security. Table 2 outlines the KPIs 
used in our AI/ML models for resource management, explaining their significance and how they contribute to 
the overall optimization process. 

Each KPI serves a specific purpose, enabling us to build sophisticated AI/ML models that predict future resource 
requirements, identify potential bottlenecks, and optimize resource allocation dynamically. By continuously 
monitoring these metrics, our models can proactively adjust resource distribution, ensuring that applications run 
smoothly and efficiently even under varying load conditions. This proactive approach not only enhances user 
experience by minimizing latency and downtime but also optimizes the use of underlying infrastructure, reducing 
operational costs and improving overall system sustainability. 

Table 2 provides a list of the actual counters that can be used per category.  
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Table 2: List of the actual counters 

Counter Categories 

Response Time response_time 

response_time_avg 

response_time_max 

response_time_min 

Error Rate error_rate 

error_count 

error_ratio 

errors_per_second 

Transaction Throughput 

 

transaction_throughput 

transactions_per_second 

transactions_rate 

Connection Persistence connection_persistence 

persistent_connections 

connection_persistence_rate 

Transaction Continuity transaction_continuity 

transaction_count 

transactions_per_second 

transaction_success_rate 

HTTP Requests http_request_total 

http_request_rate 

HTTP Response http_response_time 

http_response_code_2xx_count 

http_response_code_3xx_count 

http_response_code_4xx_count 

http_response_code_5xx_count 

SSL Connections ssl_connections 

ssl_total_connections 
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ssl_current_connections 

SSL Handshake Time ssl_handshake_time 

ssl_handshake_duration 

ssl_handshake_latency 

Database Query Times db_query_time 

db_query_response_time 

db_query_duration 

Cache Hit Rates cache_hit_rate 

cache_hit_ratio 

cache_hits 

cache_misses 

Throughput throughput 

total_throughput 

network_throughput 

data_throughput 

Network Latency network_latency 

latency_avg 

latency_max 

latency_min 

Security Metrics security_events_total 

security_events_rate 

security_violations 

security_threats_detected 

security_attacks_prevented 

Load Balancer Metrics load_balancer_throughput 

load_balancer_errors 

load_balancer_response_time 

load_balancer_server_health 

load_balancer_rule_hits 
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5.3 AI/ML to Predict Infrastructure Usage  

5.3.1 State-of-the-Art  

Infrastructure usage in the CECC refers to the utilization of various computing resources at the edge or cloud 
level. These resources can range from compute resources to storage resources to network resources. Most 
existing work in predicting infrastructure usage focuses on computing resources. Predicting infrastructure usage, 
particularly computing resources, has typically followed two directions. The first direction involves predicting the 
workload and then inferring the cloud computing resource usage, such as the CPU or memory, while the second 
direction involves considering the cloud computing user pattern to predict computing resource usage directly. 
Several approaches to workload prediction in the context of cloud resources have been explored. Some of these 
approaches employ classical time series forecasting mechanisms such as autoregressive integrated moving 
average (ARIMA) [10]. However, these approaches have shown limited learning capability compared to more 
advanced ML models.   

ML models have been extensively utilized for workload prediction in the context of the cloud, as demonstrated 
in [11], where the authors trained a regression model to forecast the resources (number of VMs) required to 
meet a specific response time, SLO, for the predicted workload. They specifically evaluated various state-of-the-
art regression methods, including Elastic Net (EN), Linear Regression (LR), Polynomial Regression (PR), and 
Decision Tree (DT), to predict the workload. In [12], a workload prediction approach is developed using Support 
Vector Regression (SVR) and web server workload data to evaluate the required resources. Their ultimate goal 
was to minimize latency while reducing infrastructure costs and energy consumption. Another approach, called 
CloudInsight, is developed in [13], where the objective is to create a cloud workload prediction framework 
leveraging multiple workload predictors to create an ensemble model to improve the accuracy of the predicted 
cloud workload. The specificity of the ensemble model is that it is periodically optimized to address sudden 
changes in workload. Similarly, [14] developed a workload prediction mechanism based on ensemble methods, 
demonstrating the superior performance of their approach compared to K Nearest Neighbor (KNN), Neural 
Network (NN), DT, Support Vector Machine (SVM), and Naïve Bayes (NB). 

A more granular approach to predicting cloud resource usage with ML is addressed in [15], where the prediction 
is tailored to the task and resource. Along the same vein of granularity, [16] presents a prediction model that 
provides short- and long-term cloud resource usage predictions, enabling the proposed solution to adapt to 
different load characteristics and temporary and permanent usage changes. In [17], a VM consolidation approach 
is proposed that takes into account both current and future resource utilization. Their approach uses a 
regression-based model to approximate the future CPU and memory utilization of virtual machines (VMs) and 
physical machines (PMs). They investigate the effectiveness of virtual and physical resource utilization prediction 
in VM consolidation performance using Google cluster and PlanetLab real workload traces. Their experimental 
results show improvements over other heuristic and meta-heuristic algorithms in reducing energy consumption, 
the number of VM migrations, and the number of SLA violations. 

In addition to traditional ML methods, DL techniques, particularly those using Long Short-Term Memory (LSTM), 
have been explored for predicting cloud resource usage. For instance, [18] investigates a model selection 
approach that captures common resource usage patterns across different tasks within a job. They employ a set 
of LSTM models trained at the job level, allowing them to select the appropriate model during inference for 
predicting resource usage accurately. In a thought-provoking study, [19] questions the necessity of complex 
machine learning models for cloud resource prediction. They find that LSTM models achieve high prediction 
accuracy even on unseen data. However, upon closer examination, they notice that the predicted values closely 
resemble the original data shifted by one-time step into the future. Other studies, such as ([20], [21], [22], [23], 
[24], [25]), have also explored various DL approaches for cloud resource prediction. These include methods based 
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on LSTM, Bidirectional LSTM (Bi-LSTM), Gated Recurrent Unit (GRU), and Convolutional Neural Networks (CNN). 
These efforts aim to improve the accuracy and efficiency of cloud resource management and optimization.  
In recent years, advancements in DL, particularly the transformer architecture [26], have facilitated the 
development of sophisticated techniques for workload and resource usage prediction. In [27], the authors 
propose a workload prediction approach that decomposes time series data into trend items, period items, and 
residuals. They employ quantile regression and exponential smoothing for prediction and additionally explore 
transformer-based prediction models in situations with ample data. Similarly, [28] introduces a deep attentive 
periodic model based on the transformer for multi-dimensional, multi-horizon workload prediction. This model 
delivers precise and reliable workload information crucial for scaling operations. Notably, their approach features 
a lightweight periodicity extractor capturing inherent workload seasonality and a periodicity attention module 
learning periodic workload dependencies. In [29], the authors develop an elaborate workload prediction model 
predicting the workload associated with each microservice using a spatio-temporal GNN. They employ various 
approaches for temporal time series data prediction and highlight the advantages of the transformer over 
methods like DT Regressor, SVM, and LR. Despite the efficacy of these methods, it is worth noting that they lack 
explainability in their predictions. 

5.3.1.1 Beyond State-of-the-Art 

The existing approaches for infrastructure usage prediction are either based on classical time series forecasting 
approaches, ML or DL methods. They also consider the recent advances in DL, such as the transformer, to predict 
infrastructure usage. However, they do not consider XAI models for infrastructure usage prediction. The 
application of XAI approaches to time series data has attracted an important consideration [30]. 

5.3.2 XAI-Enabled Fine Granular Resources Autoscaler  

In this section, we describe a Zero-touch Service Management (ZSM) framework featuring a fine-granular 
resource scaler algorithm to run microservices in a cloud-native environment optimally, proposed in [31]. The 
scaler algorithm relies on ML models to predict the performances of the run microservice. When a service 
degradation is detected, XAI algorithms are used to interpret the ML prediction and deduce which features led 
to that bad performance. More specifically, the framework relies first on an ML algorithm based on eXtreme 
Gradient Boosting (XGBoost) [32] to predict any violations related to the performance of running applications. 
The characterization of the application performance is done using the application response time metric. The 
trained ML model considers many features related to CPU and memory, namely CPU usage, CPU limit, memory 
usage, and memory limit. Parallelly, an XAI algorithm is run, namely SHAP [33], to deduce the most important 
features that yield such violations using ML outputs. By knowing the root cause of the performance violation, 
the autoscaler algorithm scales the CPU, memory, or both. Regarding the scale-down process, we consider a 
threshold-based approach for CPU and memory, in which a scale-down is possible. But, in order to avoid a ping-
pong effect (repetitive scale down and scale up), we also consider a stabilization period after a scale-up where a 
scale-down process is not allowed.  

The vertical autoscaling framework can be combined with existing horizontal scaling mechanisms in order to 
achieve both vertical and horizontal resource autoscaling. 
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5.3.2.1 Design and Specification of the Autoscaler Framework 

 

Figure 7: Zero-touch service management framework architecture 

Figure 7 illustrates a generic architecture of the proposed ZSM framework. We assume that all microservices run 
in a cloud-native environment. The figure separates between the closed-control loop components described in 
the preceding paragraph and the virtualized infrastructure and its manager. The latter is known as the assisted 
system based on ETSI Experiential Networked Intelligence (ENI) group's notation [34]. According to ETSI cloud-
native report [35], the cloud-native equivalent of a hypervisor is Container Infrastructure Service (CIS), which 
provides all the runtime infrastructural dependencies for one or more container virtualization technologies. In 
contrast, Container Infrastructure Service Management (CISM) is a cloud-native equivalent of Virtualized 
Infrastructure Manager (VIM). Technologically speaking, CSIM may correspond to Kubernetes. Regarding the 
closed-control loop, the Monitoring System (MS) monitors the KPI from CIS regarding the container's resource 
usage, such as CPU and memory consumption. In our case, we extracted information regarding computing 
resource consumption (CPU, memory) that the Analytics Engine (AE) will use to predict the performance of the 
microservice at the service level. Here, we are interested in predicting QoS as perceived by the end-users. In the 
context of a web server, the metric reflecting the QoS can be the response time, i.e., the time a web server takes 
to answer a client request. Usually, high service time means the server is overloaded and cannot handle the 
requests in a bounded time, hence degrading the user's quality of experience. AE runs the trained ML model 
along with the XAI algorithm to predict whether the response time corresponds to service degradation. The XAI 
module uses both the collected KPI as well as the ML prediction to provide an explanation. Both the explanation 
and the prediction are transmitted to the Decision Engine (DE) and, more precisely, to the Diagnostic Engine 
module (Figure 7). The latter uses the output of the AI model responsible for detecting whether the application 
response time is appropriate or not. It also receives explanations from the XAI module about inference. The 
explanation gives the contribution of the features to the model output, which means that if the model detects a 
high response time occurrence (i.e., QoS degradation), the XAI output indicates the contribution of the 
application's resource features in this result. These characteristics are related to either CPU usage or memory 
usage. The Diagnostic Engine then detects the element that caused the high response time. This information is 
then passed to the vertical autoscaler algorithm, which decides on which resource to scale, hence performing a 
fine-granular scaling rather than blindly scaling both CPU and memory. It is worth noting that the autoscaler 
decision is enforced using the northbound API exposed by CISM that allows updating the resources dedicated to 
the container running the application by modifying the application's controller object of Kubernetes. Afterward, 
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the Kubernetes controller will roll out a new instance with the new resources definition and delete the old 
instance. 

Regarding the scaling down process, we use a stabilization period after a scale-up in which scaling down will not 
be performed in order to avoid resource scaling oscillations, i.e., the autoscaler performs one action and, after a 
short period, performs the opposite action. If no performance drop has been detected during the last few 
seconds of the stabilization period, a scaling down is possible. To perform this operation, we rely on historical 
data on resource usage. For memory, if during the last stabilization period, the maximum memory usage was 
under a chosen percentage, then a scaling down of memory resources is possible. For CPU, if the mean CPU 
usage during the last stabilization period was less than a certain percentage, then a scale down of CPU resources 
can be performed. It is worth noting that the scaling down process has no impact on the granularity of the 
resource allocation. Indeed, when scaling down an application, the resources are released and can be used by 
another running application instance. 

5.3.2.1.1 Analytical Engine (AE) 

The analytical engine is responsible for analyzing the microservices' performance and detecting QoS degradation. 
It is composed of two main components: (1) the AI model, which is based on XGBoost, to predict the latency 
performance of a microservice. (2) The XAI model interprets the output of the AI model using SHAP. 

ML Training 

Considering the collected dataset, we can observe that the resources allocated to the application and the relative 
usage of resources are related to the performance of the application. First, the allocated resources show the 
limit of performance; the application with fewer available resources will perform worse. Second, the relative 
resource utilization indicates the possibility of the occurrence of high response times, which means that the 
degradation of the application performance is more likely to occur when the resource utilization approaches the 
limit allocated to the application. Therefore, we implement an ML model using the XGBoost classifier to detect 
performance deteriorations of the application. The model uses resource usage and limits information that can 
be collected on the running applications via MS. XGBoost is a scalable ML system for tree boosting. It implements 
the gradient-boosted trees algorithm, a supervised learning algorithm that can be used for regression or 
classification tasks. We train the XGBoost classifier to detect the application's performance drop based on 
resource usage patterns. To train the XGBoost classifier on the web server's dataset, we label the dataset's lines 
as QoS respected or QoS not respected when the response time is lower or higher than a threshold, respectively. 
Finally, the model gets the following information as input: memory limit, memory usage, CPU limit, CPU usage, 
relative CPU, and relative memory. Those metrics can be collected for all the running workloads via MS during 
runtime. Based on the label and the resource usage, the model classifies the performance of the application, 
using the resource consumption of the workload, into respecting QoS or not based on the resource usage and 
limit. During training, we compared several classification algorithms: K-Nearest Neighbors (KNN) classifier, 
Artificial Neural Network (ANN) classifier, Logistic Regression (LR), Random Forests (RF), and XGBoost classifier. 
The XGBoost model was selected based on the classification report by comparing the precision and recall for 
class 0, which represents the performance degradation of the service. The model's accuracy was 0.95, and the 
precision and recall for both classes (0 for Qos not respected and 1 for QoS respected) were respectively 0.86, 
0.74 for class 0, and 0.97, 0.99 for class 1. 

XAI 

The second element of the AE is the XAI module, which is responsible for interpreting the output of the AI model. 
Several XAI techniques exist and can be classified into global or local explanation techniques. Global explanation 
techniques, such as SHAP, are applied to obtain the general behavior of a model by attempting to explain the 
whole logic of a model by inspecting its structure. On the other hand, local explanation techniques, such as SHAP 
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and LIME [36], tackle explainability by segmenting the solution space and giving explanations to less complex 
solution subspaces that are relevant to the whole model. These explanations can be formed through techniques 
with the differentiating property that only explain part of the whole system’s functioning. The XAI module of the 
AE relies on the local explanation method based on SHAP to compute the scores of the features contributing to 
the model's output. The module's output is the contribution score values of the features to the output. Figure 8 
represents a visualization of an output of the SHAP method for an ML prediction. The negative values indicate 
that the feature pushes the model's output towards the output 0. while the positive values signify that the 
feature pushes the output of the model towards the positive output 1. 

 

Figure 8: Shapley values provided by the SHAP method 

For this inference, the XAI module reports the following Shapley values or scores of the features, ordered by 
decreasing contribution to the model output: “CPU_percentage” -2.56, meaning that the “CPU_percentage” 
value pushed the model towards the output 0 (SLA not respected) with a score of 2.56, the second affecting 
feature is “RAM_limit” with a score of -1.81, the next contributing feature is “RAM_usage” with a score of +0.99 
meaning that this feature pushed the model towards the output 1 (SLA respected) with a score of 0.99; for the 
less impacting features, the XAI module indicates “CPU_usage” +0.71, “RAM_percentage” -0.38,  and  
“CPU_limit” -0.13.  

Afterward, the selection of the resources to scale up is made at the DE level. This is done by comparing the 
weighted sum of the contribution of the features related to CPU resources with the weighted sum of the 
contribution of resources related to memory resources. We can deduce from the previous scores that the 
combined score of CPU-related features is -1.98 and memory -1.2, meaning that CPU-related features have more 
influence on the model decision. Therefore, the DE decides that the cause of the performance drop is insufficient 
CPU allocation. This information allows the vertical autoscaler to decide to allocate more CPU resources to the 
workload. 

5.3.2.2 Performance Evaluation 

For the performance evaluation, we use two versions of the vertical autoscaler, an XAI-based autoscaler to scale 
the web server instances resources vertically and one without using the XAI output. The running application is 
exposed to requests load produced by a test component that uses ApacheBench6 to make several concurrent 

 
6 https://httpd.apache.org/ 
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HTTP requests. We refer to a test round as a set of N requests made by C concurrent clients. It is worth recalling 
that AE runs the ML model to predict QoS degradation. The latter was trained in the dataset related to the 
performance of web servers under changing configurations. If the model detects degradation, the XAI module is 
called. The XAI takes as input both the ML output as well as the dataset to return the Shapley (or score) values 
of the features as a numerical score. Then, the Diagnostic Engine of DE compares the weighted sum of the 
memory-related features scores with the weighted sum of the CPU-related features scores. This output will allow 
the autoscaler to decide what type of resources need to be scaled.  In case the XAI module is not involved, the 
autoscaler obtains information about the service's state using only the ML module's output (XGBoost); it has no 
information about the contribution of the features to the model output. If degradation is detected, both CPU 
and memory resources are scaled. 

 

Figure 9: Highest values of CPU and RAM allocated to an instance of the applications in relation to the number of 
concurrent clients 

We performed an extensive test regarding the performances of the two vertical autoscalers. Hence, we deploy 
30 applications, and we vary the load to which each application is exposed. The application is first deployed with 
an initial resource configuration of 0.5 Core of CPU and 128MB of memory.  

The number of concurrent clients sending requests to each application varies from 10 to 100, while the number 
of requests varies from 90 when using 10 concurrent clients to 450 when a concurrency level of 100 is used. 
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Finally, we perform 100 rounds for each concurrency level. For each application, the pod configuration is 
reinitialized afterward. Resulting in a total of 300 application instances to be scaled by each autoscaler (30 
services exposed to a load varying from 10 to 100). Figure 9 shows the highest amount of CPU allocated to the 
pod running the application for each load and the highest amount of memory allocated to the pod for both 
vertical autoscalers. Whereas Figure 10 illustrates the mean response time of the 30 applications for the 100 
rounds of requests that each scaled application receives. During the experimentation, the 300 instances that 
have been scaled using the XAI-based autoscaler employed a total of 184.25 cores of CPU and 29.312 GB of 
memory, while the 300 instances that have been scaled using the non-XAI-based autoscaler used a total of 188 
core of CPU and 48.128 GB of memory. Thus, the percentage of memory gained is 39%, while the percentage of 
CPU resources gained is 1%.  

By comparing the decisions of the two vertical autoscalers we observe that the XAI-based one allocates less 
memory to the application for all amounts of load. In contrast, it allocates the same or more CPU than the non-
XAI-based autoscaler. These results clearly show the fine granularity of the resource allocation achieved by the 
XAI-based autoscaler, thanks to the ability of the latter to determine the factors that led to performance 
degradation. Moreover, from the response time plot, we observe that the mean response time of the 
applications while being managed by both vertical autoscalers is approximately equal, meaning that the 
allocation of lower resources by the XAI-based autoscaler did not affect the applications' performances. 

 

Figure 10: Mean response time in relation to the number of concurrent clients 

5.3.3 XAI for Prediciton of Infrastructure Usage 

We develop an XAI method based on the transformer for explainable prediction of the latency and determination 
of the influential feartures, characterized by infrastructure resources such as the CPU and memory. For this 
purpose, we use the Temporal Fusion Transformer (TFT) [37].  The TFT  is an AI model designed for time series 
forecasting. It combines the transformer architecture [38] with temporal fusion mechanisms to capture temporal 
patterns in sequential data. It is composed of the multi–head attention mechanism from the transformer with 
Recurrent Neural Networks (RNNs). The TFT architecture includes an LSTM encoder–decoder and multi–head 
attention components, primarily composed of gating mechanisms, variable selection networks, and static 
covariate encoding.  

5.3.3.1 Gating in TFT  

We adopt the TFT architecture presented in Figure 11 for our experiments.  Figure 11 illustrates three building 
blocks: the variable selection networks, the LSTM encoder-decoder, and the TFT, which combines the GRN with 
multi-head attention. These blocks receive inputs, including past features, the target variable, and future known 
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features. They produce forecasts of the latency and their associated quantiles. The rationale of utilizing the 
latency as our response variable is dictated by the fact that it allows us to have insight into the SLA compliance. 
In our case, we predict the latency using resources as features, such as the CPU and memory. Then, thanks to 
the explainability of the approach, we can determine which feature(s) is/are the most influential in the 
forecasting. With this mechanism, whenever, for example, the predicted latency overtakes a predefined 
threshold, we can determine at that instant which feature(s) was/were the most influential. Through this 
process, we can implement corrective measures by acting on the responsible feature and preventing the latency 
from crossing the threshold, thus being compliant with the SLA. This leads to proactive orchestration of 
microservices. 

 

Figure 11: TFT architecture for prediction 

The advantage of using TFT comes from the fact that traditional explainability methods for ML and DL 
approaches, such as LIME and SHAP, are not well-suited for time series data. For instance, LIME constructs 
independent models for each data point, while SHAP considers features independently for neighboring time 
steps, disregarding temporal order and critical dependencies between time steps in most situations. This is where 
the advantages of TFT lie. The fundamental part of the TFT architecture is the Gated Residual Networks (GRN). 
The information flow through the GRN can be represented as follows   

𝐺𝑅𝑁(𝑎,  𝑐)  =  𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑎 + 𝐺𝐿𝑈(𝜂1)) (1) 
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𝐺𝐿𝑈(𝜂1)  =  𝜎(𝑊1𝜂1 + 𝑏1) ⊙ (𝑊2𝜂1 + 𝑏2) (2) 

𝜂1 = 𝑊3𝜂2 + 𝑏3 (3) 

𝜂2 = 𝐸𝐿𝑈(𝑊4𝑎 + 𝑊5𝑐 + 𝑏4) (4) 

a is the input to the GRN, and c represents the context vector from static covariates. W and b are weights and 
biases optimized during the training phase. a and c are passed through a dense layer with Exponential Linear 
Unit (ELU) activation function, followed by a linear layer with dropout. The output from this layer is then fed to 
the Gated Linear Unit (GLU), where ⊙ denotes the element–wise product and σ is the sigmoid activation 
function. The output from the GRN is determined using standard layer normalization of the sum of input a and 
the GLU output (residual connection). 

5.3.3.2 Variable Selection Networks in TFT  

The role of the variable selection networks in the TFT is to determine the relevant inputs in the time series 
forecasting process. These networks identify the relevant features that can influence the response variable, 
thereby providing interpretable forecasting results. The following equations illustrate how the variable selection 
networks operate in general:  

𝜉𝑡,𝑣𝑠
𝑗 = 𝐺𝑅𝑁(𝜉𝑡

𝑗) (5) 

𝜈𝜒𝑡 = 𝑠𝑜𝑓𝑡 max(𝐺𝑅𝑁(Ξ𝑡 ,  𝑐𝑠)) (6) 

𝜉𝑡, 𝑣𝑠 = ∑ 𝜈𝜒𝑡
(𝑗)

𝑚𝑥

𝑗=1

𝜉𝑡,𝑣𝑠
𝑗  

 

(7) 

The first step in the variable selection is to linearly transform all variables at time t to 𝑑𝑚𝑜𝑑𝑒𝑙 dimension. The 

transformed  input for the 𝑗𝑡ℎvariable is represented by 𝜉𝑡
𝑗, where each transformed input is fed to a GRN block, 

which considers the non–linearities. The output of these blocks is 𝜉𝑡, 𝑣𝑠
𝑗 . Another GRN block which takes as input 

Ξ𝑡, the flattened 𝜉𝑡
𝑗
, and a vector context 𝑐𝑠 coming from static covariates, produces a vector 𝜈𝜒𝑡   ∈  ℝ

⬚

𝑚𝜒  after 

passing through a softmax activation function. The variable weights  𝜈𝜒𝑡   ∈  ℝ
⬚

𝑚𝜒  are multiplied with the 

corresponding processed inputs to get the final output of the variable selection networks.  

5.3.3.3 Static Covariate Encoding in TFT  

The TFT incorporates an approach to integrate static variables, which differs from LSTM and the transformer 
models. This integration is achieved by generating four context vectors from processed and weighted static 
variables, produced by the static variable selection networks. Each context vector is then infused into different 
components of the TFT, where they are utilized for processing. Refer to [37] for more details.  

5.3.3.4 Interpretable Multi-Head Attention 

The self-attention mechanism of the TFT enables it to learn long-term relationships across different time steps. 
It is extended in [37] to enhance its explainability capabilities. The attention mechanism is given by 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,  𝐾,  𝑉) = 𝐴(𝑄,  𝐾)𝑉 (8) 

Where 𝑉  ∈  ℝ𝑁×𝑑𝑉 are the values, 𝐾  ∈  ℝ𝑁×𝑑𝑎𝑡𝑡𝑛  are the keys, and  𝑄  ∈  ℝ𝑁×𝑑𝑎𝑡𝑡𝑛 are the queries. 
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A represents a normalization function, where the usual choice is scaled-dot product attention. 

𝐴(𝑄,  𝐾) = 𝑠𝑜𝑓𝑡 max (
𝑄𝐾𝑇

√𝑑𝑎𝑡𝑡𝑛

) 
(9) 

Multi-head attention is usually employed to improve the learning capacities of the standard attention 
mechanism 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,  𝐾,  𝑉) = [𝐻1,   ⋯ ,  𝐻𝑚ℎ]𝑊𝐻 (10) 

𝐻ℎ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄𝑊𝑄
(ℎ)

,  𝐾𝑊𝐾
(ℎ)

,  𝑉𝑊𝑉
(ℎ)

) (11) 

𝑊𝐾
(ℎ)

  ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝐾 , 𝑊𝑄
(ℎ)

  ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑎𝑡𝑡𝑛 , 𝑊𝑉
(ℎ)

  ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑉  

are the head-specific weights for keys, queries, and values, and 𝑊𝐻   ∈  ℝ(𝑚𝐻∙𝑑𝑉)×𝑑𝑚𝑜𝑑𝑒𝑙  combines linearily 
outputs concatenated from all heads 𝐻ℎ. The interpretable multi-head attention is given by 

𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑙𝑒𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,  𝐾,  𝑉)  =  �̃� 𝑊𝐻 (12) 

�̃�  = �̃� (𝑄,  𝐾)𝑉 𝑊𝑉 (13) 

= {
1

𝐻
  ∑ 𝐴 (𝑄𝑊𝑄

(ℎ)
,  𝐾𝑊𝐾

(ℎ)
)

𝑚𝐻 

 ℎ=1

} 𝑉𝑊𝑉  

 

 

(14) 

=
1

𝐻
  ∑ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄𝑊𝑄

(ℎ)
,  𝐾𝑊𝐾

(ℎ)
,  𝑉𝑊𝑉)

𝑚𝐻 

 ℎ=1

 

(15) 

where 𝑊𝑉   ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑉 are weights of the values shared across all heads and 𝑊𝐻   ∈  ℝ𝑑𝑎𝑡𝑡𝑒𝑛×𝑑𝑚𝑜𝑑𝑒𝑙  is used for 
linear mapping. 

5.3.3.5 Infrastructure Metrics used and Latency Pattern 

We evaluated the TFT explainable approach with real-world data. We specifically focus on the prediction of the 
latency, with CPU and memory as the infrastructure resources representing our features. We present the CPU, 
memory, and the mean latency in Figure 12. These metrics are collected at a sampling rate of 5 minutes. To 
validate our approach, we use different values of the latency, particularly we use different distributions of the 
latency values. For example, the latency p75 and p95 are considered. As an example, the latency p95 (95th 
percentile) represents the latency value below which 95% of the measured latency values belong to.  Compared, 
for example, to p99 latency, it is supposed to provide a broader view of the latency distribution. p95 latency is 
usually used to understand the performance of a system, but it is usually less impacted by extreme outliers 
compared to p99. If the p95 latency for a microservice is 100 milliseconds, it means that 95% of responses are 
received in 100 milliseconds or less, but 5% of responses may experience longer latencies. That is one of the 
reasons why latency is used for monitoring SLA compliance. 
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Figure 12: Metrics used 

5.3.3.6 Performance evaluation 

To build our prediction model for the latency, we utilize features such as the CPU and memory. Our experiments 
do not rely on any autoregressive features but only on the actual infrastructure resources to forecast future 
latency. For the TFT model, we include a time index that increments by one for each time step. We standardize 
each time series separately, ensuring that the values are always positive. To achieve this, we use the 
EncoderNormalizer, which dynamically scales each encoder sequence during model training. Our model training 
is conducted using PyTorch Lightnin. The distinctive characteristic of the TFT model is its attention mechanism, 
which attributes different levels of importance to various points in time during forecasting. This attribute 
provides explainability to the forecasted results. The TFT is designed for multi–horizon forecasting, meaning that 
it can forecast future values at multiple time horizons simultaneously; here, for illustrations purposes our multi–
horizon is equal to 2. To achieve this, the model incorporates output layers that forecast values for each time 
horizon of interest. This allows it to generate forecasts for different future points in the latency data. Additionally, 
we tune parameters such as a batch size of 32, a learning rate of 0.03, and 200 epochs. Our model architecture 
includes a hidden size of 8, an attention head size of 1, and a dropout rate of 0.1. Furthermore, we set a maximum 
prediction length of 96, and a maximum encoder length of 168. To evaluate the performance of our model, we 
utilize a quantile loss function. We use early stopping to avoid overfitting and faster convergence. 
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5.3.3.7 Forecasting Results 

We present the results of the forecasting obtained by applying the TFT to the dataset. The dataset comprises a 
response variable, latency, and two features, the CPU and memory. Our forecasting horizon is set to 2, resulting 
in two figures for each forecasted latency. In these figures, the blue curve represents the actual latency, while 
the orange curve depicts the forecasted latency. The grey curve represents the attention values generated in the 
Interpretable Multi-head Attention section shown in Figure 11. Additionally, we include the uncertainty 
estimates associated with the forecasts. 

The variable selection process chooses the relevant CPU, memory, and latency values for each time step. It 
accomplishes this task for both the current and past CPU, memory, and latency metrics. To handle past metrics, 
an encoder is employed to incorporate the selected features along with an index indicating their relative time. 
The role of the encoder is to process historical time series data and capture temporal dependencies. It consists 
of multiple layers of self-attention mechanisms and feedforward neural networks, like the encoder in the 
transformer model. This encoder encodes infrastructure metrics into a meaningful representation, which then 
serves as input to the decoder. Additionally, the decoder takes the CPU and memory features for which latency 
forecasting is desired. In TFT, the decoder primarily generates forecasts of latency. Figure 13 presents the results 
of the forecasting obtained from the TFT. On the left-hand side, we have the forecasting associated to the 1st 
horizon of forecasting and on the right-hand side to the 2nd horizon of forecasting. We observe that the losses in 
both forecasting results are relatively low, and they are given by 4.165 for the 1st horizon of forecasting and by 
2.605 for the second horizon of forecasting.  

  

Figure 13: Latency prediction results (mean) 

Figure 14 presents the explainability associated to Figure 13, where the left-hand side provides the importance 
of the features given by the encoder and the right-hand side gives the importance of the features from the 
decoder. It is worth mentioning that the encoder corresponds to the training phase and the decoder to the 
forecasting phase. In both cases the consensus is that the most influential feature in the forecasting is the CPU. 
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 Figure 14: Explainability for the predicted latency (mean) 

Figure 15 exhibits the latency forecasting provided by the TFT for the latency p75. Similarly to Figure 13, on the 
left-hand side we have the forecasting results provided for the 1st horizon of forecasting and on the right-hand 
side the forecasting provided for the 2nd horizon of forecast. In both cases, we observe that the loss is relatively 
low. It is given by 1.111 for the 1st horizon of forecasting and by 1.116 for the second horizon forecasting. These 
two forecasting results demonstrate the accuracy of the TFT.  

Figure 16 presents the explainability associated to the forecasting results. On the left-hand side the encoder 
provides the importance of the features in the training phase and on the right-hand side the decoder shows the 
importance of the features associated to the forecasting. The insight provided by the explainer is that the CPU is 
the most influential feature.  

 

 

 

 

  

Figure 15: Latency prediction results (p75) 



 
D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources 

 
 

 

© AC3 2023  Page | 43  

Figure 17 presents the latency forecasting provided by the TFT for the latency p95. Similarly to Figure 15, on the 
left-hand side we have the forecasting results provided for the 1st horizon of forecasting and on the right-hand 
side the forecasting provided for the 2nd horizon of forecasting. In both cases, we observe that the loss is relatively 
high compared to the 2 previous cases. It is given by 19.272 for the 1st horizon and 14.944 for the second horizon. 
This is particularly due to the high latency values in this experiment, which is also reflected in the forecasting. 

  

Figure 17: Latency prediction results (p95) 

Figure 18 provides the explainability associated to the latency p95. It shows the importance of the CPU feature 
for both the encoder and the decoder. This conclusion is in line with the previous experiments using various 
latencies. 

  

Figure 16: Explainability for the predicted latency (p75) 
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Figure 18: Explainability for the predicted latency (p95) 

5.3.3.8 Explainability 

One of TFT primary advantages over other DL models is its inherent interpretability, largely attributable to its 
variable selection and interpretable multi-head attention mechanisms. With TFT, we can determine the 
significance of CPU and memory in latency prediction, a capability present in both the encoder and decoder 
components. Across various experiments the consensus is that the CPU emerges as the most influential feature 
in latency predictions. Across the figures presenting the explainability, we clearly see the proportion of CPU and 
memory in the latency prediction. 

The variable selection is pivotal for interpretability as it indicates the importance of CPU and memory at each 
time step. By analyzing these influential features, we gain valuable insights into the underlying factors driving 
the forecasted latency compliance with SLA. The variable selection weights provide transparency into how the 
TFT model processes and weighs the CPU and memory. By associating specific weights with each latency 
prediction, we can understand the reasoning behind the decisions of the models and identify the key factors 
driving each forecasted latency outcome.  

Similarly, multi-head attention is crucial for interpretability as it enables the model to focus on different parts of 
the input data and learn complex temporal dependencies. Multi-head attention allows TFT to compute attention 
weights for different CPU and memory features at various time steps. With these weights, we can equally 
interpret which of the CPU and memory is most relevant for making latency predictions at each time step. This 
provides insights into the relative importance of different features and helps us understand how the model 
processes and weighs input information when generating latency predictions. Additionally, multi-head attention 
enables the TFT to capture both local and global context when making predictions. By attending to different parts 
of the input sequence with attention heads, the model can integrate information from nearby and distant time 
steps to make more informed predictions. This allows us to interpret how the model incorporates both short-
term and long-term dependencies in the data when generating the latency predictions. This detailed explanation 
of latency predictions enhances interpretability, improves analysis of SLA compliance, and provides actionable 
insights into the factors contributing to latency forecasts. 

5.3.4 GNN for Spatio-Temporal Prediction 

5.3.4.1 State-of-the-Art on GNN for Spatio-Temporal Prediction 

As cloud and edge computing environments become increasingly dynamic, the integration of GNNs into workload 
prediction frameworks presents a transformative approach to managing these complex systems. GNNs, with 
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their capability to model intricate relationships and dependencies among data points represented as nodes and 
edges in a graph, are particularly suited for the volatile and interconnected nature of cloud-edge environments. 
These environments consist of numerous computation nodes where the workload distribution and network 
topology can change rapidly due to varying demand and resource availability. 

The traditional models for workload forecasting in cloud and edge computing often struggle to adapt quickly to 
such changes, potentially leading to inefficiencies in resource allocation and increased operational costs. 
However, GNNs can leverage the inherent graph structure of these systems to capture the dynamic interactions 
between nodes—namely, the computation units across the cloud, edge, and far edge layers. This enables more 
accurate predictions of CPU usage and other critical resources by considering not only the state of individual 
nodes but also how they influence each other. 

For example, in scenarios where certain nodes become congested, GNNs can help predict the ripple effects on 
adjacent nodes, allowing for proactive task offloading and resource reallocation. This is a step beyond static 
graph models, like those used in the GraphGRU model [39], which may not capture the temporal dynamics 
effectively. By employing models such as DySAT or EvolveGCN, which incorporate temporal changes and evolving 
graph topologies, the system can continuously update its predictions to reflect the current state of the network 
([40], [41]). This dynamic adaptation ensures that resource prediction is not only real-time but also anticipatory, 
minimizing under-utilization and energy waste while enhancing the overall service quality and computational 
efficiency across the distributed computing infrastructure. Such capabilities make GNNs a pivotal technology in 
the ongoing development of smarter, more efficient cloud and edge computing strategies. 

5.3.4.2 Workload Prediction for Volatile Nodes using Dynamic GNN 

The primary objective of this study is to predict the future CPU usage of physical nodes within a distributed 
system. To achieve this, we leverage historical data on CPU usage from these nodes, as well as the CPU usage of 
various microservices that operate on them. These data points are not merely static but part of a dynamic 
interplay that unfolds over time across different nodes. To capture this dynamic, we are constructing a temporal 
graph that dynamically profiles each microservice. 

5.3.4.3 Temporal Graph Construction 

Given a set of physical nodes 𝑁 = (𝑛1,  𝑛2,   …  𝑛𝑚) and a set of microservices 𝑀 = (𝑚1,  𝑚2,   …  𝑚𝑘), each 
uniquely identified by an ID. Let 𝑈𝑛

𝑡  and 𝑈𝑚,𝑛
𝑡  denote the CPU usage of node 𝑛  and the CPU usage of microservice 

instance 𝑚  running on node  at time 𝑡 , respectively. Time is discretized into constant intervals, indexed by 𝑡 , 
and 𝑊𝐼𝑁𝐷𝑂𝑊  is the number of time steps into the past included in the feature vector for both nodes and edges.  
The complete temporal graph 𝐺  is defined as a series of temporal slices {𝐺𝑡}𝑡=1 

𝑇 , where each 𝐺𝑡 corresponds to 
the state of the graph at time 𝑡 .  Each 𝐺𝑡 is constructed as follows: 

• Each node 𝑛 ∈ 𝑁  is represented as a node in 𝐺𝑡. 

• For each microservice 𝑚𝑖 assigned to run on node 𝑛𝑥  at time 𝑡 , an edge is added from node 𝑛𝑦 to 𝑛𝑥  if 

𝑚𝑖 was running on 𝑛𝑦 at 𝑡 − 1 . Formally, the edge set 𝐸𝑡 for graph 𝐺𝑡 is defined as: 

    𝐸𝑡 = { (𝑛𝑦 , 𝑛𝑥) ∣∣  𝑚𝑖 ∈ 𝑀,  𝑟𝑎𝑛𝑡−1(𝑚𝑖 , 𝑛𝑦), 𝑡𝑜 𝑛𝑥𝑎𝑡 𝑡 }  

where ran𝑡−1(𝑚, 𝑛) denotes that microservice 𝑚  was running on node 𝑛  at 𝑡 − 1 .  
Node and edge features at time step 𝑡  are defined as: 

• Node Features: For each node 𝑛  at time 𝑡, the feature vector includes the CPU usage of the physical 

node 𝑛  for the last 𝑊𝐼𝑁𝐷𝑂𝑊  timesteps: {𝑈𝑛  
𝑡−𝑖}

𝑖=0

𝑊𝐼𝑁𝐷𝑂𝑊−1
. 

• Edge Features: For each edge (𝑛𝑦 , 𝑛𝑥) representing the assignment of microservice 𝑚  from 𝑛𝑦 to 𝑛𝑥, 

the feature vector includes the CPU usage trace of the microservice instance 𝑚  for the last 𝑊𝐼𝑁𝐷𝑂𝑊  

timesteps while it was running on 𝑛𝑦: {𝑈𝑚,𝑛𝑦
𝑡−𝑖 }

𝑖=0

𝑊𝐼𝑁𝐷𝑂𝑊−1
. 



 
D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources 

 
 

 

© AC3 2023  Page | 46  

5.3.4.4 Model Architecture 

 

Figure 19: Model architecture 

The GTMixer model is designed to leverage the temporal graph structure 𝐺𝑡 using GNN principles. The model 
architecture (Figure 19) is composed of N Graph Temporal Convolution (GTConv) layers followed by a projection 
layer that outputs the predicted features as seen in Figure 20 below. 

Aggregation Layer 

Each GTConv layer operates on nodes 𝑢  by aggregating spatial information from neighboring nodes 𝑣  connected 
through edges 𝑒𝑢𝑣. To perform this aggregation, a Single Head Attention mechanism is used as the first step. This 
mechanism dynamically weighs the influence of each neighbor 𝑣  based on the edge attributes 𝑒𝑢𝑣 and the 
destination node features. The weighted features are then aggregated with a permutation invariant function 
such as max, mean, or sum, denoted with ⨁. This process is represented mathematically as: 

ℎ𝑢 = ⨁ 𝑆𝑖𝑛𝑔𝑙𝑒𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑥𝑢 , 𝑒𝑣𝑢)

𝑣∈𝑁𝑢

 
(16) 

After aggregation, the spatial representation, which encapsulates the CPU consumption profiles from incoming 
microservices, is concatenated with the transformed representation of the source node. This node 
transformation is applied through a sequence that includes a linear layer, a ReLU activation, and dropout, with a 
residual connection to enhance the learning of subtle variations in the node features: 

𝑥𝑢
′ = 𝑥𝑢 + ReLU(Linear(𝑥𝑢))  (17) 

 

Figure 20: Aggregation layer 
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The concatenated vector is then passed through a series of MixerLayers, as described in the TSMixer architecture, 
which mixes features across both the node and its neighborhood to capture temporal dependencies effectively: 

ℎ′_𝑢 = "{𝑀𝑖𝑥𝑒𝑟𝐿𝑎𝑦𝑒𝑟}(𝑥′_𝑢||ℎ_𝑛)  (18) 

The Mixer Layer depicted in Figure 21 is made up of two modules: 𝑀𝐿𝑃𝑡𝑖𝑚𝑒  and 𝑀𝐿𝑃𝑓𝑒𝑎𝑡 . 𝑀𝐿𝑃𝑡𝑖𝑚𝑒  is like the 

source node transformation but with an additional normalization layer at the beginning. The 𝑀𝐿𝑃𝑓𝑒𝑎𝑡  module 

combines the source node features with the aggregated representation of the incoming microservices resource 
usage. It has a normalization layer, followed by two linear layers, ReLU activation, and dropout. This layered 
approach ensures that each node’s feature vector represents its attributes and integrates information from its 
immediate graph neighborhood over time. 

  

Figure 21: Mixer Layer 

Temporal Projection 

Finally, the output from the last GTConv layer is processed through a projection layer, which linearly transforms 
the high-dimensional feature vector to the desired output dimension, facilitating direct prediction of the CPU 
usage for each node. This model architecture aligns with the temporal graph 𝐺𝑡 by explicitly considering both 
the static and dynamic aspects of nodes and edges, thereby enabling predictions that are deeply contextualized 
by the historical data embedded in the graph. 

5.3.4.5 Performance Evaluation 

5.3.4.5.1 Dataset 

We analyzed a trace dataset from an Alibaba cluster, which included detailed runtime metrics of nearly 20,000 
microservices. This dataset was collected from over 10,000 bare-metal nodes, documenting separate traces of 
CPU and memory usage over a 12-hour period in 2021. Upon analysis, we observed low variability in RAM usage 
across nodes, prompting us to exclude it from further experimental considerations. 

To construct the temporal graph for our analysis, we utilized the node table, which included information on the 
CPU and RAM usage of physical nodes, and the MSResource table, which documented CPU and RAM usage traces 
of instances. Each instance was assigned a unique ID, a microservice ID, and the node ID of the physical node it 
was running on. In cases where a machine hosted multiple instances of the same microservice, we computed the 
mean CPU and RAM usage to establish the edge signals in the temporal graph. In each time step of our simulation, 
we randomly selected a percentage of nodes and erased their historical CPU utilization data to mimic the 
volatility inherent in edge environments. For these same nodes, we then recalculated the CPU utilization, 𝑈𝑛

𝑡 , by 
considering only the microservices incoming from the previous time step. This approach effectively simulates a 
scenario in which new nodes emerge and are assigned a subset of microservices to execute. For all experiments, 
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we consistently selected the same 300 nodes to ensure a fair comparison. We integrated the temporal 
information into our prediction model by defining a 𝑊𝐼𝑁𝐷𝑂𝑊 of 10 timesteps and a 𝐻𝑂𝑅𝐼𝑍𝑂𝑁 of 3 timesteps 
for the prediction algorithm. To evaluate GraphGRU we constructed the static relationships between nodes using 
the Dynamic Time Warping (DTW) algorithm. 

5.3.4.5.2 Evaluation Metrics 

To evaluate the performance of models predicting CPU usage in the context of the temporal graph 𝐺𝑡, we use 
both standard and dynamic evaluation metrics. Standard metrics include Mean Squared Error (MSE), Mean 
Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). The dynamic versions—Dynamic MSE 
(DMSE), Dynamic MAE (DMAE), and Dynamic MAPE (DMAPE)—specifically measure prediction errors for nodes 
that dynamically appear with no previous history. 

 Standard Metrics 

MSE =
1

𝑛
∑ (𝑈𝑛

𝑡𝑖 − 𝑈𝑛
𝑡�̂�)

2
𝑛

𝑖=1

 
(19) 

MAE =
1

𝑛
∑ |𝑈𝑛

𝑡𝑖 − 𝑈𝑛
𝑡�̂�|

𝑛

𝑖=1

 
(20) 

MAPE =
100%

𝑛
∑ |

𝑈𝑛
𝑡𝑖 − 𝑈𝑛

𝑡�̂�

𝑈𝑛
𝑡𝑖

|

𝑛

𝑖=1

 
(21) 

Dynamic Metrics 

Dynamic versions of the metrics (DMSE, DMAE, DMAPE) follow the same formulas as their standard counterparts 
but are computed over 𝑛dynamic, the number of observations for nodes that appeared dynamically without prior 

history. 

5.3.4.5.3 Performance Evaluaiton 

The results of our study are encapsulated in Table 3 which provides a comprehensive view of how each model 
performed across both standard and dynamic metrics. When comparing GTMixer with GraphGRU, the former 
achieved a substantial improvement, especially in standard metrics like MSE, MAE, and MAPE. These 
improvements are even more pronounced when considering dynamic metrics (DMSE, DMAE, DMAPE), 
demonstrating GTMixer's superior capability to adapt to nodes with no historical data. 

Table 3: Results 

Model       MSE MAE MAPE DMSE DMAE DMAPE 

GraphGRU 0.0377 0.1547 3.4180 0.0306 0.1435 3.2768 

GTMixer (Ours) 0.0049 0.0436 0.0882 0.0154 0.0957 0.2202 
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6 Decision Enforcement with Reinforcement Learning 

Cloud-native applications are inherently dynamic, experiencing varying levels of activity throughout their 
lifecycle [42]. With the cloud-edge ecosystem experiencing a significant influx of dynamic requests and 
continuous growth, the efficient management of resources to deal with diverse workloads becomes essential 
[43]. By leveraging real-time metrics on CPU and memory utilization, scheduling algorithms can take appropriate 
resource allocation decisions, preventing SLA breaches and resource wastage [44]. Moreover, resource 
management entails the efficient allocation of resources among various users or applications to maximize overall 
system utilization. Resource allocation policies need to take into account workload diversity, ensuring fair access 
to resources while preventing resource monopolization by individual users or applications [45]. In this 
deliverable, we propose a strategy based on Reinforcement Learning (RL) for allocating CPU and memory 
resources within a Multi-access Edge Computing (MEC) server that hosts heterogeneous services characterized 
by different SLA requirements. 

6.1 Reinforcement Learning for Resource Allocation  

RL is a model-free approach that does not require prior information on the system models’ dynamics. It involves 
agents that learn optimal policies through gradually interacting with the environment [46]. Leveraging the 
abundance of data collected from heterogeneous networks [47], RL has become popular in recent years for 
developing methods that deal with the resource allocation problem. A preliminary study is presented in [48], 
combining Q-Learning and a heuristic approach for dynamically allocating resources on delay-sensitive services. 
In [49], Q-Learning is used to obtain the optimum level of maximum CPU usage in a function instance to trigger 
resource scaling decisions. Q-Learning-based approaches are also adopted in [50], [51] and [52] to determine 
resource scaling actions in order to maintain low application latency and failure rates. Authors in [53] use a Deep-
Q-learning (DQN) based approach for resource allocation among different computation servers, while the works 
in [54] and [55] tackle the problem of computation offloading by breaking it into smaller subtasks involving RL 
algorithms. An actor-critic model has been implemented in [56] to optimize the allocation of radio and computing 
resources and proved to outperform existing benchmarks, such as Deep Deterministic Policy Gradient (DDPG) 
and DQN. Furthermore, a multi-agent distributed learning framework is proposed in [57] or making resource 
orchestration decisions, while federated learning is leveraged in [58] and [59] to optimally allocate 
communication and computing resources. 

However, several key issues have not been addressed yet in the state-of-the-art literature. Computational load 
generated from heterogeneous services associated with the end users, edge computing or any other additional 
services is not considered together. In the present work, the following contributions are made to address the 
aforementioned limitations:  

• An intelligent strategy is developed for dynamically allocating resources within a MEC server to 
heterogeneous services characterized by diverse demands and SLA requirements. 

• The infrastructure's resource allocation is defined as a multidimensional problem with a known 
capacity, where each dimension represents a specific resource type, namely CPU and memory.  

• To guide resource allocation decisions, we employ a Soft Actor-Critic (SAC) agent. Compared to a 
baseline random service allocator, the SAC agent demonstrates superior performance, achieving 
higher usage efficiency ratios, while adhering to the SLA requirements of the diverse services. 

6.1.1.1 System Model and Problem Formulation 

A MEC server S is considered with fixed computational C and memory M capacities that provides N different 
services to the end-users, as shown in Figure 22. The server considers the resource demands 𝐷𝑛  of the services, 
which are represented as a resource tuple consisting of CPU and memory demands, and allocates the available 
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resources, which are also represented as a CPU-memory tuple (𝑐𝑛 , 𝑚𝑛). The services have heterogeneous SLA 
requirements, which as shown in Table 4 ([60], [61]), are expressed in terms of maximum permissible delay. The 
overall delay model is a combination of separate functions based on CPU and memory resources. For the 
computational delay, a simple model based on the CPU demand-allocation ratio is used: 

𝑙𝑐 = 𝛽
𝐶𝑃𝑈𝑑𝑒𝑚𝑎𝑛𝑑

𝐶𝑃𝑈𝑎𝑙𝑙𝑜𝑐
 

(22) 

where 𝛽  is a weighting factor used for regulation. According to (22) when the CPU demand is higher than the 
allocated CPU, the delay incurred will be higher and vice versa.  

Delay experienced due to memory utilization is modelled as a piecewise linear function, as shown in (23) [62]. 
There are two scenarios under consideration: (i) when the allocated memory meets or exceeds the demanded 
memory and (ii) when the allocated memory is lower than the demanded. In (23), 𝑙𝑠𝑢𝑟𝑝𝑙𝑢𝑠 and 𝑙𝑠𝑐𝑎𝑟𝑐𝑒  are the 

minimum delays incurred under the two cases, while 𝜑  is the slope, which is derived based on reasonable delay 
values from the literature. 

𝑙𝑚 = {
𝑙𝑠𝑢𝑟𝑝𝑙𝑢𝑠 + 𝜑𝑙𝑑𝑒𝑚𝑎𝑛𝑑      if    𝑚𝑒𝑚𝑑𝑒𝑚 ≤ 𝑚𝑒𝑚𝑎𝑙𝑙𝑜𝑐 

𝑙𝑠𝑐𝑎𝑟𝑐𝑒 + 𝜑𝑙𝑑𝑒𝑚𝑎𝑛𝑑       if    𝑚𝑒𝑚𝑑𝑒𝑚 > 𝑚𝑒𝑚𝑎𝑙𝑙𝑜𝑐
 

(23) 

 

 

Figure 22: System model 
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Table 4: SLA requirements and Gn parameters 

Type Services Max. Delay (s) GCPU Gmem 

I Critical medical 

application I 
0.02 22950 38050 

II Cyber-physical 

systems 
0.01 32000 40000 

III Critical medical 

application II 
0.1 34200 42800 

IV Video, imaging 

and audio 

application 

0.00075 38450 23550 

The resource allocation problem is formulated as a multidimensional problem with fixed capacity R. Each 
dimension represents the total CPU and memory capacity, denoted as C and M, respectively. The objective is to 
maximize the total utility by appropriately distributing the resources 𝐴𝑛 to the N slices at different time windows 
as shown in (24): 

𝑈 = 𝑚𝑎𝑥 ∑ 𝐺𝑛
[𝐶𝑃𝑈,𝑚𝑒𝑚]

𝑁

𝑛=1

𝐴𝑛
[𝐶𝑃𝑈,𝑚𝑒𝑚](𝑡) 

(24) 

where 𝐺𝑛 represents the gain attached with each resource type for each service; the values of parameter 𝐺𝑛 are 
determined through experimentation and are listed in Table 4. In addition, several constraints are considered to 
ensure strict surveillance of the allocation policy. Concretely, equation (25) limits the resource allocation based 
on the available capacity at the server. Equation (26) prevents SLA violation by maintaining the probability of 
allocated resources 𝐴𝑛 being less than the demanded resources 𝐷𝑛, below a maximum acceptable threshold 𝜀𝑛. 
Finally, equation (27) prevents over-provisioning by imposing a maximum resource allocation ratio 𝑚𝑛 per 
service: 

∑ 𝐴𝑛
[𝐶𝑃𝑈,𝑚𝑒𝑚]

(𝑡)

𝑁

𝑛=1

≤ 𝑅[𝐶𝑃𝑈,𝑚𝑒𝑚](𝑡) 
(25) 

 

Pr (𝐴𝑛
[𝐶𝑃𝑈,𝑚𝑒𝑚]

(𝑡) < 𝐷𝑛
[𝐶𝑃𝑈,𝑚𝑒𝑚]

(𝑡)) ≤ 𝜀𝑛 (26) 

𝐴𝑛
[𝐶𝑃𝑈,𝑚𝑒𝑚]

(𝑡)

𝐷𝑛
[𝐶𝑃𝑈,𝑚𝑒𝑚]

(𝑡)
≤ 𝑚𝑛 

(27) 

6.1.1.2 RL Formulation 

The resource allocation problem is mapped into a Markov Decision Process (MDP), consisting of the state space, 
the action space and the reward function, as shown in Figure 23. At every time step, the state space 𝑠𝑡 comprises 
of the server’s maximum resource capacities C and M, the allocated resources 𝐴𝑛, the demands 𝐷𝑛, as well as 
the delays 𝑙𝑛 at every network slice: 
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𝑠𝑡 = [𝐶, 𝑀, 𝐷1 , … , 𝐷𝑁 , 𝐴1, … , 𝐴𝑁 , 𝑙1, … , 𝑙𝑁]. (28) 

The action space 𝑎𝑡 comprises of the CPU and memory resources assigned to the slices by the RL agent: 

𝑎𝑡 = [𝑐1, … , 𝑐𝑁 , 𝑚1, … , 𝑚𝑁] (29) 

The reward function in (30) guides the learning process by evaluating the actions taken at each time step: 

𝑟(𝑡) = ∑ 𝑈𝑛
𝐶𝑃𝑈

𝑁

𝑛=1

𝑓(𝛿𝐶𝑃𝑈) + 𝑈𝑛
𝑚𝑒𝑚𝑓(𝛿𝑚𝑒𝑚) − 𝑃𝑛

𝑑𝑒𝑙𝑎𝑦  
(30) 

where 𝑈𝑛
𝐶𝑃𝑈and 𝑈𝑛

𝑚𝑒𝑚  are utility values associated with each resource type for each slice. The utility values are 
calculated by multiplying the allocations with the gains per resource per slice i.e.,  𝑈𝑛

𝐶𝑃𝑈 = 𝐺𝑛
𝐶𝑃𝑈𝑐𝑛(𝑡) and 

𝑈𝑛
𝑚𝑒𝑚 = 𝐺𝑛

𝑚𝑒𝑚𝑚𝑛(𝑡). The reward function also depends on the differences 𝛿𝐶𝑃𝑈 and 𝛿𝑚𝑒𝑚 between the 
allocations made by the agent and the actual demand. 

𝑓(𝛿𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒) = {
1   if  𝛿𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ≥ 0
0   if  𝛿𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 < 0

 
(31) 

In addition, 𝑃𝑛
𝑑𝑒𝑙𝑎𝑦  in   

(32) penalizes the difference between the actual delay 𝑙𝑛(𝑡) and the maximum permissible delay  𝑙𝑛
𝑒𝑥𝑝for each 

slice type, as reported in Table 4. 

 

𝑃𝑛
𝑑𝑒𝑙𝑎𝑦(𝑡) = {

𝑤𝑛(𝑙𝑛(𝑡) − 𝑙𝑒𝑥𝑝)   if  𝑙𝑛 > 𝑙𝑛
𝑒𝑥𝑝

0                                 if  𝑙𝑛 ≤ 𝑙𝑛
𝑒𝑥𝑝   

 

(32) 

The SAC algorithm is utilized for the resource allocation procedure, since it is appropriate for continuous state 
and action spaces. SAC finds a policy 𝜋(𝑎𝑡|𝑠𝑡) i.e. a state-to-action mapping, that maximizes the sum of rewards 

with maximum entropy given by 𝐽(𝜋) = ∑ 𝐸(𝑠𝑡,𝑎𝑡)[𝑟(𝑠𝑡 , 𝑎𝑡) + 𝑎𝐻𝜋(. |𝑠𝑡)]𝑇
𝑡=0 , in which 𝛼 controls the 

stochasticity of the optimal policy and its importance with respect to the rewards. The algorithm finds this policy 
through an iteration process consisting of a policy evaluation step and a policy improvement step. In the 
evaluation step, a soft Q-function 𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝐽(𝜋) + 𝛾𝐸𝑠𝑡+1

[𝑉(𝑠𝑡+1)] is evaluated, where 𝑉(𝑠𝑡) =

𝐸𝑎𝑡~𝜋[𝑄(𝑠𝑡 , 𝑎𝑡) − log 𝜋 (𝑎𝑡|𝑠𝑡)]. By defining a modified Bellman backup operator [63] as 𝑇𝜋, a value sequence 

is obtained in which each value is given by 𝑄𝑘+1 = 𝑇𝜋𝑄𝑘 . In the policy improvement step, 𝜋 is updated towards 
the exponential of each new value of the soft Q-function. Every time the policy is updated, SAC guarantees that 
𝑄𝜋𝑛𝑒𝑤 (𝑠𝑡 , 𝑎𝑡) ≥ 𝑄𝜋𝑜𝑙𝑑(𝑠𝑡 , 𝑎𝑡). Updating 𝜋 and 𝑄(𝑠𝑡 , 𝑎𝑡) in this way will yield an optimal policy. When considering 
continuous state and action spaces, 𝑄 , 𝑉  and 𝜋 are defined through deep neural networks (DNNs), which are 
optimized using stochastic gradient descent [64]. 
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Figure 23: RL system 

6.1.1.3 Performance evaluation 

The proposed RL methodology is implemented in Python using Tensorflow 2.15 ([65], [66]).  Table 5 specifies the 
parameters used for the SAC agent’s training process, which have been appropriately tuned after 
experimentation within the considered infrastructure. The training dataset has been obtained from the Google 
cluster usage traces [67], with the CPU and memory demands of four different service types. A thorough 
preprocessing and scaling has occurred on the considered data to emulate real-world cases. The SAC agent’s 
resource allocation decisions are compared with a random service allocator, which takes its decisions based on 
the gains of Table 4. Services with higher gains are favored under this approach. For each resource type and 
service, the two methods are compared in terms of resource usage efficiency and delay.  

Table 5: SAC parameters 

Learning rate Episodes Steps Batch size Optimizer 𝛾  𝛼  𝜏  

0.0001 20 1024 64 Adam 0.90 0.90 0.95 

The results illustrated in Figure 24 and Figure 25 demonstrate the SAC agent’s superior comprehension of service 
demands and available resources at the MEC server. As a result, it achieves a more favorable equilibrium 
between resource demand and allocations, leading to significantly higher CPU utilization ratios for service types 
I and II. It is noted that the proposed method attains similar outcomes for the remaining service types while 
adhering to all constraints outlined in equations (25), (26), (27). On the contrary, the random service orchestrator 
exhibits a notable over-allocation, resulting in resource wastage, which may affect the availability of resources 
on the server. Similar outcomes are presented in Figure 26 and Figure 27 for the memory allocations regarding 
service types II and IV, respectively. The SAC agent outperforms the random allocator, achieving much higher 
utilization rates. This also holds for the rest of the services, proving that the proposed RL-based method is capable 
of effectively managing multiple service types, maintaining high CPU and memory utilization rates. 
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Figure 24: Average CPU efficiency for service type I 

 

Figure 25: Average CPU efficiency for service type II 
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Figure 26: Average memory usage efficiency for service type II 

 

Figure 27: Average memory usage efficiency for service type IV 

Moreover, SLA requirements for the services need to be met in order to avoid degradation in the smooth 
operation of the server. Figure 28 shows the maximum acceptable delay for service type III, as well as the average 
delays achieved by the two methods. Although both allocators successfully meet the set threshold, as previously 
discussed, this is achieved through a more efficient utilization of the available resources under the proposed SAC 
agent.   
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Figure 28: Average delay for service type III 

6.1.2 Future Work on Reinforcement Learning for Energy-Aware Resource Allocation 

Energy consumption in cloud-edge environments has shown rapid growth, leading to significant environmental 
and economic impacts [68]. Energy-aware resource allocation can address these challenges by optimizing 
resource utilization, minimizing energy consumption, while meeting performance requirements [69]. By 
leveraging advanced algorithms that dynamically adjust resources in response to varying user demands, dynamic 
workload patterns, heterogeneous resource characteristics, as well as latency and energy constraints, 
organizations can achieve significant cost savings, mitigate environmental impact, and ensure seamless user 
experiences [70].  

Reinforcement learning holds immense potential for addressing the challenges of energy-aware resource 
allocation in the cloud-edge continuum. Authors in [71] have devised a RL-based strategy to offload tasks based 
on the service class and the energy they consume. A multi-agent RL algorithm is utilized in [72] to maximize the 
long-term energy efficiency within heterogeneous networks. A resource allocation policy with power constraints 
for IoT-based networks is developed in [73], while the concept of reward-oriented task offloading under limited 
power resources is examined in [74].  

However, there is a lack of focus in some important areas in the state-of-the-art literature. Many studies overlook 
the sensitivity of tasks or services, neglecting their impact on energy consumption at the network edge. For 
instance, a delay-sensitive task may demand more energy compared to a compute-sensitive task, or vice versa. 
Understanding the specific resources utilized at the network edge is an aspect that has not been thoroughly 
explored. Furthermore, the findings presented in most state-of-the-art research heavily rely on a single Key 
Performance Indicator (KPI), which might not accurately represent real-world scenarios. 

Taking into consideration the aforementioned limitations, in our future work, we are planning to expand the 
model presented in the previous section developing an energy-efficient resource allocation strategy based on 
RL. Currently, key aspects of the proposed model, such as the representation of the state and action spaces, as 
well as the reward design, are under development. Our target is to consider an appropriate state space that 
captures relevant information about the system, including workload characteristics, resource availability, as well 
as energy consumption and resource utilization metrics. Moreover, the action space should include a set of 
decisions that the RL agent takes to optimally allocate resources, such as vertical and horizontal scaling. Finally, 
special focus will be given on formulating a reward function that incentivizes energy efficiency while penalizing 
deviations from performance objectives, such as delay or throughput requirements. 
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7 Network Programmability  

AC3 specifically deals with federated cloud-edge infrastructures, and as such, the network infrastructure that 
supports it must also be designed and managed with federation in mind. When dealing with such types of 
infrastructure, there are several core factors that need to be addressed, specifically, transience and 
heterogeneity: 

• Federated infrastructures are by their nature transient, meaning that the environment can, and will, 
change, dictating that we cannot make assumptions about fixed infrastructures being in place. 
Therefore, AC3 must be capable of dynamically creating and configuring networks, as well as adapting 
the network to the underlying infrastructure or application deployments. 

• Federated infrastructures are also, by their nature, heterogeneous, meaning that the environment will 
be made up of a broad range of different technologies carrying out the same or similar functions. This is 
no different in respect to networking, especially in the world of virtualized networks, where more control 
is given to engineers (developers/dev-ops) to build and create their own. 

Therefore, the AC3 architecture must consider that individual infrastructure providers may utilize a number of 
differing technologies and approaches in providing network connectivity, while at the same time having the 
flexibility to adapt to changing infrastructure. Within this task, we address this through Network 
Programmability, using virtualized networks that can be created, modified, and removed on demand. At the 
same time, we explore how differing programmable network technologies can be used and managed within the 
AC3 architecture.  

Specifically, we investigate using both SD-WAN and Kubernetes-based networking as two common approaches 
to providing programmable networking in the context of containerized applications. Both SD-WAN and 
Kubernetes effectively address the transiency and heterogeneity issues facing federated infrastructures. SD-
WAN optimizes network paths, providing consistent performance and resilience in transient environments, while 
Kubernetes mitigates heterogeneity by creating a unified orchestration layer that allows for consistent 
management of resources, including networks. The combination of both enhances network and application 
performance and provides uniform interactions across disparate environments. 

7.1 State-of-the Art on Network Programmability  

In the context of the AC3 project, we are focusing on two particular approaches to Network Programmability. 
Specifically SD-WAN and Kubernetes-based network orchestration. 

7.1.1 Software Defined Networking  

The academic research on SD-WAN, in general, appears to be at an early stage, with very few research works 
done on interconnecting cloud/edge/far edge using SD-WAN, particularly in cloud edge continuum. In addition, 
besides considering works dedicated to only cloud interconnection, in this section, we have included works that 
focus on enterprise networking and those that suppose a complete control of the underlay network, though, in 
AC3 context, we are mainly concerned with interconnecting nodes, without having control over the underlying 
networks. 

[75] addresses the challenge of resiliency in an SD-WAN environment basically composed of two CPEs and dual 
WAN links. They focus on traffic engineering for dynamic management and prioritization of network flow. 
Leveraging Floodlight Controller, their architecture is composed of a Java-based SDN controller, and custom 
software modules on top of it for traffic engineering. Authors in [76], propose an SDN-based network 
architecture to improve cloud resiliency by interconnecting data centers through an overlay network managed 
by a centralized controller. The overlay network represents different egress nodes, each acting as a gateway for 
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data centers positioned behind them. These egress nodes are connected to the Internet through different 
Internet Service Providers (ISP). Their architecture utilizes Software Defined Networking (SDN) and Segment 
Routing (SR) to dynamically adapt routing in response to network failures. Authors in [77] implement a testbed 
supporting SD-WAN to connect two data centers. The goal is to guarantee the predefined QoS and traffic 
prioritization. The controller was able to efficiently manage 300 VoIP calls, using a maximum of 16% CPU load. 

B4 ([78][79][79], [79]) represents the software-defined inter-datacenter WAN deployed by Google. SD-WAN B4 
connects data centers in different locations using a two-tier hierarchical control framework. At the lower layer, 
each data center site contains a network controller and hosts local control applications managing site-specific 
traffic. Meanwhile, at the top layer, a logically centralized traffic engineering server is implemented. This server 
enforces high-level traffic engineering policies aimed primarily at optimizing bandwidth allocation between 
competing applications across different data center sites [80]. Customized switches were designed to fit B4, 
taking into account Google's inter-datacenter WAN and traffic characteristics. In B4, the network controller 
dynamically reallocates bandwidth to meet evolving application needs while also offering dynamic rerouting in 
the event of a link or switch failure. [81] introduces SWAN, a Software-Driven WAN system designed to improve 
the utilization of inter-datacenter networks. By centrally controlling service traffic and reconfiguring the 
network's data plane to align with current traffic demands, SWAN avoids transient congestion often caused by 
uncoordinated updates in traditional networks. They showed that leaving 10% free link capacity allows for quick 
congestion-free updates. 

[82] presents an SD-WAN demo-test implementation leveraging open-source tools, focusing on improving 
enterprise network services. Their implementation connects two branch offices to a headquarters, using 
OpenDaylight [83] for SDN control, OpenvSwitch [84] for virtual switches, and monitoring services for dynamic 
path selection. VyOS [85] was used for WAN virtual router emulation.  

There are other open-source SD-WAN solutions like FlexiWAN [86] and EveryWAN [87]. In [86] the controller is 
implemented based on Free Range Routing [88], and the edge device or route infrastructure using FD.io VPP 
[89], and it envisages a more classic approach to SD-WAN with the control functionalities still running at the edge 
in the virtual routers. EveryWAN, on the other hand, uses a hybrid IP/SDN approach where a local control logic 
based on distributed IP routing coexists with a programmable IP forwarding engine controller by a SD-WAN 
controller [87]. The Universal Customer Premises Equipment (uCPE) was implemented based on Linux 
networking leveraging the pyroute2 [90] netlink library. 

7.1.2 Kubernetes-based Network Orchestration 

Container Network Interfaces (CNI) form the foundation for networking within Kubernetes, providing a container 
with a network interface, IP addresses, subnets, and routing rules [67]. The CNI abstraction allows Kubernetes to 
remain agnostic to the underlying network while ensuring that pods can communicate across nodes in the 
cluster. There are various CNI implementations (plugins) which deliver a range of networking capabilities to the 
cluster. 

• Calico places an emphasis on strong network security through advanced policy enforcement, supports 
both overlay and non-overlay networks, and is capable of running in large scale and multi-cluster 
production environments [68]. 

• Flannel creates a mesh of layer 3 network subnets which are assigned to each Kubernetes node and is 
particularly effective in environments where simplicity and ease of deployment are prioritized. It does 
not manage network policies but can be used in conjunction with those which do and can be configured 
to provide cross-cluster communication [69]. 

• Cilium provides the capability of recognizing, interpreting, and managing traffic based on application 
level APIs which allows the network to understand and interact with the packets being transferred [70]. 
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Cilium handles protocols such as HTTP, gRPC, and Kafka at the network layer, enabling security measures 
and controls specific to each protocol. CiliumMesh could provide networking capabilities which enable 
the connection of multiple clusters but relies on the Cilium CNI which must be adopted in each cluster. 

While CNIs can be extended to support multi-cluster connectivity, their primary focus is intra-cluster networking. 
This multi-cluster support is an additional capability rather than their main function. In contrast, CNI agnostic 
tools like Skupper and Submariner are specifically designed for multi-cluster connectivity. They provide a more 
straightforward and efficient link between clusters, with fewer prerequisites and less overhead. 

Kubernetes provides its own set of network resources such as services, NodePorts, and Load Balancers, that sit 
on top of the CNI, leveraging it’s capabilities to provide varied network features. For instance, ingress resources 
are used to provide HTTP and HTTPS-based access to applications from outside a cluster.   

However many of these features are highly oriented towards intra-cluster communication. Using these resources 
to address inter-cluster communication can require significant configuration, can lead to compromised security 
posture, or are often limited to HTTP only. 

7.1.2.1 CNI-Agnostic Solutions 

Skupper is a multi-cluster service interconnection tool for Kubernetes. In contrast to broader solutions like 
Submariner and Cilium, Skupper connects specific namespaces rather than entire clusters through a Virtual 
Application Network (VAN). It leverages virtual addressing to mirror services across clusters, simplifying 
integration and improving security. The benefits of this include enhanced service discovery and inter-cluster 
communication, utilizing mutual TLS for secure connections, and isolating traffic to prevent network attacks. This 
targeted approach reduces the complexity typically associated with multi-cluster configurations [71]. 

Submariner provides a simple and direct networking solution for Pods and Services across different Kubernetes 
clusters hosted either on-premises or in the cloud. As an open-source tool that is agnostic to network plugins 
(CNI), Submariner uses a centralised broker architecture to manage cluster configurations and connectivity, and 
straightforward service discovery within the same cluster [72]. Key advantages include an easy setup with a 
broker to handle cluster credentials and efficient routing management. Traffic between clusters passes through 
designated gateway nodes which are selected via leadership elections. This ensures a secure and structured data 
flow and is optimal for environments requiring inter-cluster communication without the complexities of multi-
cluster services. 

Istio provides a set of tools to manage microservices across clusters without being dependent on a specific CNI 
as with CiliumMesh and Cilium. Its advantages include advanced traffic management, automatic mutual TLS for 
secure communication, scalable policy enforcement, and observability through detailed telemetry [73]. 

Cloud-Native Wide Area Networks (CN-WAN) are designed to manage service connectivity across clusters and 
service providers, independent of CNI’s. CN-WAN can provide optimized network traffic routing based on service 
metadata, reduced latency through intelligent path selection, and dynamic network adaptation to support 
enterprises in efficiently utilizing WAN resources to enable increased performance in a multi-cloud environment 
[74]. 

Linkerd is a lightweight service mesh that is not dependent on a specific underlying CNI and focuses on enhancing 
the security, speed, and reliability of service communications. Key advantages include minimal configuration, 
automatic proxy injection, real-time failure detection and response, and extensive observability functionality. 

7.2 Proposed Hybrid Architecture for Multi-layer Network Programmability 

As discussed in Section 7.1, our Network Programmability solution must be able to cater for both transience and, 
in particular, heterogeneity of infrastructure. The broader AC3 architecture addresses this through the 
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Adaptation and Federation layer, which acts as an adapter to bind to the specific APIs of the Local Management 
Systems (LMS). The Network Programmability task of AC3 attempts to take this further by making no assumptions 
on the specific network technology in use. That is, in the same way that the AC3 architecture presumes the 
existence of multiple LMS for the management of compute resources, we also assume that there may be multiple 
LMS for the creation and management of network resources. The LMS for the network can be based on multiple 
technologies, here we focus on 2 broad types of networking; namely SDN, specifically SD-WAN, and CBN 
(Kubernetes). In Figure 29, we show an example of the 2 technologies working in tandem to support the 
networking needs of AC3. Here we see the LCM, which based on its acquired knowledge of the application and 
resource utilization profiles, orchestrates the placement and deployment of the microservices, via the Decision 
Enforcement and Adaptation Layer. As part of this process it provides the relevant deployment configuration 
information of the microservices to the appropriate Network LMS: either the SD-Controller for managing SD-
WAN based data-centre networks; OR the AC3 Network Operator for managing Kubernetes-based data centre 
networks. The selected LMS then attempts to configure the network in order to implement the required 
connectivity. 

 

Figure 29: Software Defined Networking and Container-Based Networking working together 

In the context of AC3, we can classify Network Programmability functions into 2 broad categories: 

• Proactive Network Configuration: The ability to configure networking on demand to support specific 
application deployments or infrastructure configurations. 

• Reactive Network Configuration: The ability to reconfigure the network in line with detected QoS or QoE 
issues. 
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7.2.1 SD-WAN  

7.2.1.1 SD-WAN Overall Architecture 

The proposed architecture abstract and aggregate the different networking resources (multiple heterogeneous 
WAN paths) interconnecting the CECC nodes to the CECCM, and to introduce flexibility, agility and 
programmability in managing deployed microservice’s traffic flow based on the defined SLA/QoS requirements, 
and the network conditions. The overall architecture is composed of three planes: i) management, ii) control, 
and iii) data plane, as depicted in Figure 30. 

 

 

Figure 30: CECC SD-WAN Overall Architecture 

Management Plane 

As the overall SD-WAN architecture illustrates, the SD-WAN management plan is an integral part of the CECCM. 
The management of WAN interconnecting CECC nodes belonging to different infrastructure providers is part of 
the resource management in the CECCM management plane. The federation layer, which acts as an abstraction 
layer between the management components and the various local management systems, can also federate 
several SD-WAN controllers (WAN LMS) in the case of a distributed SD-WAN control plane. In addition to 
computing infrastructure like cloud and edge LMS exposing APIs to the CECCM, the SD-WAN, acting as an LMS 
for the networking resources part, exposes network management functionalities to the CECCM using its NBI. It 
bridges the gap between the abstracted networking capabilities provided by the SD-WAN controller and the 
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operational demands of the App and Resources Mgmt component of the CECCM.  

As the CECCM orchestrates the placement, deployment, and LCM of microservices, it is able to provide relevant 
deployment configuration information to the SD-WAN controller identifying microservice traffic. This enables 
the controller to configure SD-WAN edge devices with matching rules (like protocol, port number, 
source/destination IP addresses, etc.) to identify and classify application traffic. These classes of traffic are 
grouped based on QoS requirements, and different microservices can be classed into one class according to their 
similar QoS requirements. These classes are defined at the CECCM level and passed to the controller in the form 
of requests to be then pushed by the controller as configurations to the edge devices as matching rules, which 
will be used for traffic identification and classification. 

For instance, consider a microservice experiencing SLA degradation, such as exceeding the maximum acceptable 
latency threshold while its traffic flows through overlay network “ON-1”, the CECCM, assessing both the overall 
QoS requirements specified by the application developer and the current conditions of the network leveraging a 
monitoring module, will request rerouting the microservice's traffic to a different overlay network “ON-2” that 
satisfies the QoS requirements.  

Subsequently, the controller implements policy adjustments to redirect the traffic through the tunnels of the 
overlay network “ON-2”. These traffic updates could be static, specified by the application developer or the 
CECCM user, or dynamic using an integrated AI/ML-based module such as RL.  

In case more than one overlay link is satisfying the QoS requirements of a specific traffic class, the CECCM can 
load balance traffic over overlay links that satisfies the QoS requirements of this class (e.g. per flow load 
balancing). Another CECCM's management plane functionality is the deployment of edge devices, Virtual 
Network Functions (VNFs), after adding a new CECC node. 

Control Plane 

Decoupled from the data plane, the control plane is fundamentally responsible for enforcing the control and 
configurations of the edge devices. Through the NBI, the SD-WAN controller (Network LMS) receives network 
update requests from the CECCM, and then translates these requests to a set of commands or configurations to 
perform at the edge devices leveraging the SBI. 

In addition to central management of the edge devices's networking aspects, from interface configurations and 
overlay tunnels to routing tables and advanced policy-based routing decisions, the controller also handles the 
monitoring agents on edge devices that monitor overlay tunnel specific network metrics (e.g., latency and packet 
loss). 

This global view of the network, in terms of different overlay topologies, and real-time network performance, 
exposed to the CECCM can be leveraged for dynamic traffic management, and optimizing the microservice SLA 
(network QoS requirements) fulfillment. 

Data Plane 

In a typical SD-WAN solution, for example, in enterprise networks, the data plane connecting different enterprise 
branch sites and headquarters is established by creating overlay links over both private and public IP/WAN 
infrastructures. However, in the CECC context the private IP/WAN connectivity is not always guaranteed, and 
cloud/edge resources could be provided by different providers that do not share dedicated private IP/WAN links. 

In order to connect the geographically separated CECC nodes and abstract the heterogeneous WAN connections 
(broadband LTE/5G, Internet, MPLS, ect.) logical overlay links are created over the existing physical underlay 
WAN infrastructures. The SD-WAN overlay network consists of the edge devices (also known as CPE/vCPE in 
enterprise networking) and the set of logical tunnels created between these edge devices. Each edge device is 
deployed at the border of each CECC node as a gateway between the CECC node’s (cloud or edge) local network 
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and the different WAN; hence, representing an endpoint for overlay tunnels. 

These tunnels are created using different technologies such as VXLAN [91] or GRE [92] over IPsec to encapsulate 
traffic between CECC nodes, thus providing secure communication paths and allowing flexibility in forwarding 
behavior. The configurations of edge devices for instantiating overlay tunnels, defining policies, recognizing and 
classifying traffic for application-driven routing and routing decisions are centrally managed at the control plane 
and pushed by the SD-WAN controller to the edge devices leveraging its Southbound API. 

In order to be able to dynamically route traffic of different services deployed in different CECC infrastructures, 
edge devices, in addition to overlay packet encapsulation, need to be able to identify or recognize microservices 
traffic based on defined policies and matching rules in order to route it through a specific overlay based on 
defined QoS requirements or SLA agreements and network conditions, enabling an application-driven routing 
which is detailed in the following section. 

7.2.1.2 Architecture Instantiation 

This section presents an instance implementation of the proposed architecture. The architecture depicted in 
Figure 31 has been implemented based on the open source SD-WAN EveryWAN  tool.  We started by leveraging 
the implementation of both the edge device and the controller of EveryWAN, and the adaptation agent of the 
CECCM for interacting with the controller NBI (Annexe A).  

In EveryWAN, the SD-WAN edge device was implemented as VNF, and can be deployed on any server providing 
computing, storage and network interfaces. Designed with a hybrid IP/SDN approach, this SD-WAN edge device 
combines a Programmable IP Forwarding Engine (P-IPFE), an IP routing daemon (IPRE) and a Southbound API 
also implemented using gRPC. Besides programming the forwarding entries, the controller can override the 
routing decisions taken by the IPRE. The IP Forwarding Engine was implemented using Linux networking, with 
the pyroute2 python library facilitating interactions with the Linux kernel netlink interface. 

  

Figure 31: Application aware routing 
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For traffic redirection of a specific application over a specific overlay network, It exists an E2E network slice in 
their SD-WAN solution as a combination of LAN/VLAN interfaces and an overlay network. For isolation between 
applications traffic in different overlay networks, a VRF lite approach was adopted mapping, for each overlay 
network, one LAN/VLAN interface with one VRF and with one physical WAN interface. However, besides the 
limitation of supporting only one underlay WAN interface in EveryWAN implementation, the E2E Slice definition 
(vLAN - overlay network - vLAN) using VRF lite presents another limitation in our case. As an interface cannot be 
slave to multiple VRF at the same time, the association of several overlay networks created on different underlay 
WAN with the same LAN interface was not possible with VRF lite, knowing that virtual WAN interfaces and 
bridging would raise complications. 

To address these challenges and adapt to the CECC context, we reimplemented certain modules like the overlay 
manager in the SD-WAN controller, and the different handlers in the SD-WAN edge. Additionally, we added other 
needed modules like application-driven routing and monitoring. 

Firstly, to support hybrid WAN connections, and enable overlay network over multiple underlay links without 
losing the Layer 3 isolation, we opted for utilizing Linux routing tables as instances of P-IPFE instead of VRF.   

Secondly, for the application-driven routing, as depicted in Figure 31 each Linux routing table of one overlay 
network is mapped to one or a group of traffic classes instead of a one LAN/vLAN interface mapped to one VRF 
instance. Each overlay network has a dedicated Linux routing table, thus enabling logical isolation from other 
overlay networks and allowing microservices and applications from different overlays to have an isolated routing 
behavior. Thus, we are not limited to the local interface to separate traffic, and each traffic class can have 
multiple ingress interfaces (LAN/VLAN interfaces).  

 

Figure 32: Service traffic identifier creation process 

Figure 32 illustrates the process of defining an application for traffic classification and routing over a specific 
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overlay network (ON-1). As mentioned in above sections, the CECCM has a global view of applications 
deployment, and information like deployment configurations and matching rules (e.g. protocol, port number, 
source/destination ip addresses, etc.) can be provided as a JSON file to the CECCM network manager. This 
information is used by the network manager to identify and classify service traffic, which then requests the SD-
WAN controller to the corresponding rules to the traffic classes. At the edge level, we used Linux IPTables tool 
for traffic classification and marking and IPRule for redirecting the traffic marked with the traffic class mark over 
the overlay routing table. 

In addition, one of the main functionalities of the CECCM is dynamic rerouting in response to any experienced 
SLA degradation, specifically microservice QoS requirement violation. For this, we have added overlay monitoring 
to provide network metrics to the CECCM resource monitoring module, that can be used by an AI-based traffic 
engineering module, for example, an RL algorithm for dynamic routing. In our initial implementation, we adopted 
a straightforward active monitoring approach, in which network measurements including latency and packet loss 
are periodically transmitted to the controller. 

7.2.1.3 Performance Evaluation 

In this section, we present the results of our evaluation tests, which include edge-level overlay creation time, 
E2E overlay creation time, memory and CPU consumption of the SD-WAN edge device (VRF vs. Linux routing 
table). The performance evaluations were conducted using a test bed comprising 2 edge devices and one SD-
WAN controller, each implemented as virtual machines (VMs). The edge devices were connected using two 
different laboratory networks and the properties of a WAN were emulated using NetEm. The SD-WAN edge VMs 
were allocated 2GB of RAM and 1 CPU, while the controller VM was allocated 4GB of RAM and 2 CPUs. The host 
machine on which the edge device virtual machine was provisioned was equipped with an Intel® Core™ i7-1365U 
processor with 10 cores, and 3.9GHz clock speed, and 32GB LPDDR5-6400MHz RAM. 

7.2.1.3.1 Overlay Creation Time  

Figure 33 shows a comparison of the time required to create SD-WAN overlay tunnels in a single SD-WAN edge 
between our approach using Linux Routing Table (RT) approach and the VRF approach. Initially, with overlay 
numbers under 100, both the VRF and RT approaches show a nearly constant time, followed by a linear increase 
after 100 overlay tunnels. Overall, both approaches had similar overlay creation time with minor deviations. 

Figure 34 represents the E2E time taken to create overlays from the MMO request moment to the overlay tunnels 
establishment. These results closely resemble those in Figure 33 despite the slight delay due to the laboratory 
network latency between the MMO/SD-WAN controller and the SD-WAN edges. 
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Figure 33: Overlay creation time 

 

Figure 34: E2E overlay creation time 

SD-WAN Edge CPU Usage 

The evaluation presented in Figure 35 considers the CPU usage of the SD-WAN edge Virtual Machine in terms of 
the overlay tunnels number created at each time in both the VRF and the RT approach. The findings show a linear 
rise in CPU usage as the number of overlay tunnels increases for both the VRF and the RT approach. The overall 
performance of both approaches is similar, although the RT approach tends to have slightly lower CPU usage.  

 SD-WAN Edge RAM Usage 

Figure 36 illustrates memory usage for creating overlay tunnels, comparing between our approach using the 
Linux RT and the VRF approach. The findings illustrated in Figure 36 show a linear, slow-rate increase in RAM 
usage as the number of the overlay tunnels increase. Comparatively, the RT approach demonstrates memory 
efficiency, consuming around 10% less memory than the VRF approach. This difference can be attributed to the 
additional overhead associated with running multiple VRF instances. 
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Figure 35: SD-WAN edge CPU consumption 

 

Figure 36: SD-WAN edge RAM consumption 

7.2.2 Kubernetes-based Network Orchestration 

In terms of containerisation, undoubtedly one platform stands out as being the leader, and can almost be 
considered the de-facto standard for container execution, management and orchestration. Kubernetes boasts a 
host of features that make it the platform of choice for organisations of all sizes across industry. However, some 
of the most powerful features of Kubernetes, and the ones that make it so suitable for building our Network 
Programmability solution on, are [75]:  

• Declarative Configuration: is a foundational feature of platforms such as Kubernetes. The desired state 
of the network is detailed in a configuration file rather than specifying the steps required to achieve that 
state. This streamlines network management, reduces errors, and drastically improves reproducibility 
across different environments. 

• Extensibility: allowing users to define custom resources that can be created and managed in the exact 
same way as any first-class platform resource. 

• Common API-based management leverages standardised APIs to orchestrate and monitor network 
resources in Kubernetes. A unified interface allows developers to interact with services and plugins 
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without having to alter the underlying network. This provides enhanced flexibility, scalability, and 
adaptability with regards to the networking framework. 

In this work we leverage these core platform features to deliver the AC3 Network Operator. The aim of this 
component is to provide a novel management layer for multi-cluster network configuration and management. 
Specifically, this component aims to: 

• Implement the AC3 LMS for Kubernetes, enabling AC3 to manage and control K8s based networks 

• Enable automated creation and configuration of multiple network overlays of varying types within 
Kubernetes  

• Dynamically adapt the network configuration based on monitoring data in order to improve performance  

• Be extensible, in order to support the integration of additional Kubernetes network technologies, 
supporting multiple overlays of varying types 

7.2.2.1 AC3 Network Management Operator 

As shown in Figure 37, the AC3 network operator implements the network LMS interface to the broader AC3 

architecture, allowing AC3 to manage and control the network configuration within a given Kubernetes cluster. 
The operator pattern in Kubernetes is an extremely powerful extensibility mechanism that allows developers to 
add additional functionality to the k8s platform, but in a way that it is viewed and managed as part of the platform 
itself. Operators consist of both a Custom Resource Definition and a controller to manage these resources. 

 

Figure 37: Network management operator 

The beauty of this approach is that it allows the central AC3 control plane to manage the network through the 
same interface with which it can manage any other resource (e.g. provision nodes, deploy applications, etc.). 
However, this operator provides AC3 an abstraction layer to the underlying Kubernetes network technologies, 
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meaning AC3 does not need to be aware of the specific technology delivering the network connectivity. Instead, 
AC3 simply requests connectivity to be created or modified, and the operator will attempt to execute this based 
on the available network solution. 

We also need to consider that there may be multiple different types of interconnected infrastructures that may 
want to join an AC3 federation. Some infrastructure providers may have closer commercial ties, and therefore 
have much more tightly coupled technical and security domains, while others may effectively be discrete 
clusters. In Kubernetes, these translate as multi-clusters with differing forms of control plane architectures. For 
instance, some data center providers may share a control plane through technologies like Open Cluster 
Management (OCM), whereby a single control plane administers different clusters. In this model, these multiple 
clusters can be managed by a single LMS via a central Kubernetes API, meaning that network interconnectivity is 
more easily established. With standalone clusters, the benefit of Kubernetes is that there is still a standard 
management API, meaning all network management tasks are executed in the same way. The core difference 
being that we need to assume security access is granted across all clusters within the AC3 federation. In reality 
this means that each network operator needs to have access to the APIs of all other clusters in order to be able 
to link clusters. We aim to be flexible enough to cater for both these scenarios, where the underlying technology 
used may vary based on the type of control plane used. 

7.2.2.2 Custom Resource Definitions (CRD) 

As mentioned above, a key part of this pattern is the Customer Resource Descriptor (CRD) that provides the 
schema definition (and effectively the API) for the new network management resource. Within this project we 
aim to leverage existing standards specifications, specifically the NetworkGraph object from the NetJson data 
interchange format (REF). This provides the decorative description of what the overlay connections between the 
nodes/applications in the network are required by the AC3 control plane. The creation or modification of this 
definition triggers the controller to then configure the underlying network technologies to deliver this topology. 
A simplified NetworkGraph example: 

{ 
   "type": "NetworkGraph", 
   "label": "Test Network", 
   "networkType": "van" # mesh, l3, etc 
  
"links": [ 
        { 
            "source": "cluster1-namespace1", 
            "target": "cluster2-namespace1", 
            "cost": 1.000 
        }, 
        { 
            "source": "cluster1-node1", 
            "target": "cluster2-node1", 
            "cost": 1.000 
        }, 
        { 
            "source": "cluster2-node1", 
            "target": "cluster2-node1", 
            "cost": 1.000 
        } 



 
D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources 

 
 

 

© AC3 2023  Page | 70  

    ] 
} 

 

 

7.2.2.3 AC3 Network Controller 

The controller in the AC3 operator monitors its managed resource descriptors, and based on any change, will 
attempt to create or modify the state of the actual resources in order to align with the requested state. 
Specifically the controller will attempt to create the requested links between the nodes (applications) using a 
specific Kubernetes-based network technology. Depending on the type of network connectivity required, 
different technologies can be employed.  

There are common approaches to delivering virtualised networks within the platform itself. Leveraging the 
underlying CNI, these approaches offer scalable, flexible, and efficient networking solutions, enabling inter-pod 
communications within a cluster as well as providing access to external services. For instance nodeports, ingress 
routers and load balancers. While these can support inter-cluster communication, they are typically oriented 
towards intra-cluster communications, or enabling external access to pods on an individual basis. This makes 
them not well suited as a comprehensive multi-cluster solution, with issues such as limited protocol support, 
limited port ranges, limited scalability and performance, as well as security. However there are also many 
powerful 3rd party networking solutions (for example Submariner and Skupper) that offer additional networking 
features and capabilities, which utilise the extensibility mechanisms of Kubernetes to integrate seamlessly into 
the platform.  Therefore the technologies currently in scope are Skupper for VAN overlays, and Submariner for 
layer 3 overlays. For instance, based on a required connection between 2 services, each deployed in a 
container/pod and hosted in different clusters, the AC3 network operator can configure Skupper to create 
application specific links between these 2 services. 

7.2.2.4 Proactive Network Configuration mechanisms 

One of the core aspects of the AC3 network operator is to provision and configure networks between clusters, in 
order to support the deployment and management of AC3 applications. This will be done based on instruction 
from AC3’s Decision Enforcement component, via the Adaptation and Federation layer. As mentioned in the 
previous section, the CRD effectively acts as an interface for AC3 to instruct the network operator to create or 
modify the network, which will subsequently trigger the controller to create or modify Skupper or Submariner 
resources. An overview of Skupper and Submariner is presented in D2.3, however here we will go into more detail 
on the specific elements of these technologies that the AC3 Network Operator will configure and modify in order 
to create the required overlays. 

7.2.2.4.1  Skupper Overview 

In a Skupper network, the connections between Skupper routers are secured with mutual TLS using a private, 
dedicated Certificate Authority (CA). Each router is uniquely identified by its own certificate. Skupper ensures 
security through TLS encryption, mutual TLS authentication and Role Based Access Control (RBAC). These 
safeguards help maintain the confidentiality and integrity of communication while ensuring only authorised 
services can interact with each other. Additionally, it's worth noting that Skupper links are namespace-specific, 
providing isolation and control over communication within individual namespaces. 

7.2.2.4.2 Skupper Network Configuration 
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The process of installing and configuring Skupper in order to link different namespaces creates a number of 
Kubernetes resources. The core components are: 

• Skupper Router: Apache Qpid Dispatch Router that handles the actual routing of messages between 
services across clusters.  

• Site Controller: Manages the configuration of the scupper site, including artefacts such as configmaps 
and tokens. 

• Skupper Service Controller: Handles setup and maintenance of inter-cluster connections, updates 
routing configuration dynamically when changes occur, exposes local cluster services to other clusters, 
manages network topology and keeps track of which services are where and how they are connected. 

The deployment of the Skupper resources is typically done via CLI, but can also be done directly via YAML files. 
The sample below demonstrates a declarative descriptor for a Skupper router. We can leverage this to 
automatically create routers based on the connectivity required by AC3 and expressed in the network operator 
CRD. 

 

There are also other advanced configurations and settings that we can exploit. For instance, Skupper can support 
service load balancing configurations, adjusting traffic distribution across multiple instances when service 
performance is impacted, thus ensuring constant communication between services across Kubernetes clusters. 



 
D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources 

 
 

 

© AC3 2023  Page | 72  

 

Figure 38: Skupper configuration 

When Skupper is configured in a specific namespace, we can then create links from that namespace to 
namespaces in other clusters. The process of linking 2 namespaces centers around the creation of a token which 
stores the credentials such as the CA certificates, client certificate and key, and a connection URL which points 
to the AMQP router on the originating site. The router on the second site is configured with the contents of this 
token to establish a communication channel, apply routing rules, and synchronize network topology. While some 
resources like routers can be configured automatically, others such as the sharing of tokens to establish links 
require manual setup. This is an area we aim to extend Skupper in the context of AC3 by making this an automated 
process, using the AC3 network operator to create the required tokens in other clusters using the K8s API. 

7.2.2.4.3 Submariner Network Configuration 

Following the same basic approach as above, we can also create Submariner configuration resources in order to 
create and modify Submariner-based network configuration. This involves installing Submariner components 
across Kubernetes clusters, defining CRDs for managing connectivity and service discovery, setting parameters, 
establishing secure connections between clusters, testing communication between workloads and maintaining 
ongoing monitoring and integration with network plugins. In doing so, having to tailor the configuration to 
specific requirements ensures effective deployment and management of Submariner-based network 
connectivity. 
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Figure 39: Submariner configuration 

The main Submariner architectural components are shown in Figure 39. Of specific interest are the Route Agent, 
Gateway Engine and Broker. Route Agents are responsible for managing the routing tables and for routing inter-
cluster traffic from the node to the cluster’s active Gateway Engine, who then sends the traffic to the destination 
cluster. The Gateway Engine is responsible for creating and maintaining the IPSec tunnels between clusters. The 
Broker is a central component, installed on a single cluster, that facilitates the exchange of meta-data (specifically 
CRDs) between clusters. These CRDs, such as endpoint and cluster, contain information about the active Gateway 
Engine in a cluster, and static information about the originating cluster, such as its service and pod CIDRs. 

Unlike Skupper, where each namespace needs to be specifically linked, in Submariner the cross-cluster 
connection is at the cluster level. So when we join a cluster to the network, a gateway is automatically 
provisioned, and services within the network are then visible to any connected cluster. 

7.2.2.5 Reactive Network Configuration Mechanisms 

In the AC3 network context, reactive network configuration involves dynamically adjusting network settings 
based on real-time conditions to improve the performance and resource allocation for applications in a 
Kubernetes cluster. A key call out within this block of work is that we are dealing with virtualized overlay 
networks, which provide an abstraction on the underlying physical network. As a result, we are limited in the 
level of fine-grained control we can exert on the network in terms of routing, traffic classification and 
prioritization, etc. However, within AC3 we are currently exploring several mechanisms that allow us to react to 
undesirable conditions within the network and improve the QoS experienced. These approaches are outlined 
below. 

7.2.2.5.1 Multi-overlay Networks 

This approach involves dynamically creating multiple overlay networks between applications or clusters in order 
to distribute network traffic more efficiently, thereby increasing network performance. Within this approach 
there are 2 potential areas of investigation, load balancing and traffic segmentation. 

Load balancing will create multiple overlays with the aim of evenly distributing traffic between them. That is to 
say that the distribution of traffic is not based on any type of traffic classification. This enhances network 
performance by dynamically balancing traffic based on factors like network conditions and application 
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requirements. Traffic segmentation then involves creating and assigning dedicated overlays to specific types of 
traffic based on predefined criteria. By segmenting traffic, the network operator can ensure that certain types of 
traffic receive preferential treatment. For instance, traffic with higher latency requirements, such as voice or 
video, can be segmented into a set of overlays, with a suitable set of resources applied.  

In Skupper the primary components responsible for managing the tunnel and routing traffic are the router and 
the controller. When establishing a connection between 2 namespaces, two routers are created per namespace, 
these include an Apache Qpid dispatch router which handles the actual routing of messages between services, 
and a sidecar router responsible for tasks like collecting metrics and monitoring. Whereas the controller itself 
orchestrates the deployment, configuration and monitoring of the Skupper components. Namespaces can be 
allocated on a per-application basis but also can be shared by multiple applications, subject to the organization's 
policies. So, there is a clear performance concern where multiple high-throughput applications can be 
communicating across a single VAN link, or single extremely high-throughput applications would have only a 
single router on a given node. Our aim then is to dynamically create multiple Skupper routers per namespace, 
subject to network conditions, and to then balance requests across these overlays. By creating additional router 
pods we are also allocating more CPU/memory resources to routing. Figure 40 shows a sample architecture for 
this multi-router overlay. The broker-based approach is a common mechanism to balance traffic between 
routers, but also creates a bottleneck at the broker. We will also examine non-broker-based approaches to 
maximize resilience. 

 

Figure 40: Multiple skupper routers 

In Submariner, Gateways are the primary mechanism of establishing and controlling the virtual tunnels between 
clusters. These tunnels are at the cluster (site) level, meaning all applications in a given cluster will share the 
same connection. This presents a potential performance bottleneck, whereby high-throughput or high-
bandwidth applications could negatively impact the overall performance of all applications on the same cluster. 
Our proposal is to establish multiple gateways per cluster and allow for balanced routing between them. This 
also increases the resilience of the Submariner network, as if a single active gateway fails in the current 
implementation, work must be done to switch over to a new gateway, including making new tunnels and new 
routes, which takes time. 
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Figure 41: Multiple gateways per cluster 

7.2.2.5.2 Adaptive Routing Resource Allocation 

One of the major benefits of Kubernetes is that the declarative descriptions of resources can be modified in real-
time to adapt to changing conditions within the platform. When we provision network resources that provide 
specific network functions, we can also adjust these as needed to react to performance concerns. As an example, 
the Skupper router, responsible for routing traffic from individual namespaces between clusters, creates a 
Kubernetes pod with a CPU and memory allocation. These allocations can be dynamically updated, and the pod 
restarted in order to improve the performance of the router. 

apiVersion: v1  
kind: ConfigMap  
metadata:  
  name: "skupper-site"  
data:  
  name: "my-site"  
  router-cpu: 2 

 

We can also directly modify the deployment description for a given router container to alter the requested CPU 
and memory as well as their limits.  

 

resources: 
      requests: 
        memory: "64Mi" 
        cpu: "250m" 
      limits: 
        memory: "128Mi" 
        cpu: "500m" 

 

7.2.2.5.3 Service Load Balancing 

One clear mechanism to allow us to impact the experienced QoS is to modify the load balancing configuration of 
the services, in order to remove load on individual (virtual) network interfaces, network links, etc. This can take 
several forms: 
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• Provisioning new pods on different nodes and configuring/modifying load balancing rules. 

• Provisioning new Pods on different clusters and configuring/modifying load balancing rules. 

Both Skupper and Submariner offer features that can be used to support this load balancing. For instance, 
Skupper has visibility across clusters as to both service load and available capacity. So, where services are 
replicated in multiple locations, Skupper can direct requests to specific instances based on available capacity. 
The AC3 network operator can then leverage this feature to dynamically modify the deployment location of the 
services and update the Skupper configuration accordingly, such that load-balancing happens automatically. 
Furthermore, a cost can be associated with individual links such that we can tailor preferential links.   

However, a key consideration is that any alteration of the service placement in the context of load balancing 
must be done with consideration for the overall service placement strategy as derived by the AC3 LCM. That is, 
modifying the load balancing strategy should not violate the service placement decisions made to optimize the 
resource usage or energy efficiency of the overall system. The link cost feature is something that could be utilized 
in this regard, assigning link weightings in line with the core placement strategy in order to mitigate significant 
violations. 

7.2.2.5.4 Rate Limiting 

Rate limiting is a common approach to throttle the level of incoming requests to a given service in order to reduce 
certain performance on the service.  When we identify a performance issue within a specific network link, we 
can implement rate limiting to safeguard the available resources. For instance, we could configure the ingress 
load balancer (NetScaler) to limit the number of requests from a specific location or to a specific application 
(URL). This is the least desirable approach to managing network performance as, while it preserves the integrity 
of the service, it has the potential to impact the overall user experience if requests are dropped by throttling. 
This approach should be done in conjunction with an appropriate service load balancing strategy. 

7.2.2.6 Network Monitoring 

Another required capability for the Network Programmability component is to expose resources and their 
metrics to the central AC3 Resource Discovery and Monitoring components. Also, by proactively monitoring the 
network, the AC3 network operator can detect and respond to any anomalies or issues that may arise, allowing 
for timely mitigations to be implemented and ensuring a reliable network for applications running within the 
cluster. 

In this work we will simply leverage the industry standard Kubernetes monitoring approach, which is typically 
performed by the Prometheus platform, due to its seamless integration and powerful feature set. In particular 
its customisable application and system metrics capturing, expressive query language, metrics API and alerting 
framework. Another important feature is its extensibility. For example the Node Exporter extension allows 
metrics for the underlying nodes hardware to be gathered. 
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Figure 42: Network monitoring 

One of the key tasks going forward is to identify the common set of metrics that all network LMS’s should monitor 
and return to the monitoring component. Within the context of the AC3 network, this would cover values such 
as latency, throughout and connection stats.  
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8 Conclusions 

In this deliverable, we presented the initial work pertaining to WP4. We emphasized the progress made in the 
development of mechanisms for resource discovery and monitoring, Section 4. This includes a unified monitoring 
data model, emphasizing the need for a comprehensive schema that captures dynamic resource states (CPU, 
memory, storage), classifies resources by type (edge, cloud), tracks energy sources, and determines geographical 
locations. We also presented our mechanism for collecting the monitored data and explained the data collection 
processes for both computing and networking. We provided the operational and application-specific metrics 
required for the AI-based LCM. This sets the foundation for obtaining the data emanating from the federated 
infrastructure and for building the resource management capabilities allowing for zero-touch management and 
configuration, Section 5. 

To materialize the promise of AI-based LCM in the context of CECC, several new and innovative AI/ML approaches 
have been developed, Section 5. The first approach is based on XAI for fine-grained resource autoscaling. This 
approach combines an ML mechanism, XGBoost, with an explainer, SHAP, for explainable detection of SLA non-
compliance and implementation of autoscaling procedures, Section 5.3.2. The second approach uses the 
Temporal Fusion Transformer for explainable prediction of latency, Section 5.3.3, complementing the 
mechanism based on XGBoost and presented in Section 5.3.2. The third approach employs a spatio-temporal 
GNN for resource prediction, particularly workload prediction for volatile nodes using dynamic GNNs, 5.3.4. To 
consider the prediction results and implement autoscaling procedures, we develop a resource management 
strategy using RL mechanisms based on a Soft Actor-Critic (SAC) agent, Section 6. To allow the traffic of 
microservices across the CECCM, a hybrid architecture for multi-layer Network Programmability has been 
developed in Section 7, where we consider technologies such as Skupper and Submariner.  

With regard to Network Programmability, we focus on Software Defined Networking (SDN) and Container-Based 
Networking (CBN) (Kubernetes), where we provide the possibility for proactive and reactive network 
configuration. We adapted the SD-WAN architecture by reimplementing certain modules, such as the overlay 
manager in the SD-WAN controller and the different handlers in the SD-WAN edge. Additionally, we added 
necessary modules like application-driven routing and monitoring, and we considered an overlay monitoring to 
provide network metrics to the CECCM resource monitoring module, which can be utilized by an AI-based traffic 
engineering module. Regarding CBN, we adopted Kubernetes-based network orchestration by designing and 
building a custom AC3 network operator.  This operator allows to manage and control network configuration 
within a given Kubernetes cluster. We also proposed a mechanism for multi-overlay networks, involving 
dynamically creating multiple overlay networks between applications or clusters to distribute network traffic 
more efficiently, thereby increasing network performance. We provided a capability which by proactively 
monitoring the network allows the AC3 network operator to detect and respond to any anomalies or issues that 
may arise, allowing for timely mitigations to ensure a reliable network for applications running within the cluster, 
Section 7.2.2.6.  

As for future work, whose results will be reported in D4.2, we will be extending the work presented in this 
deliverable to consider the energy aspect in the AI-based LCM of microservices. Moreover, we will present the 
operationalization and performance of the monitoring system and discuss its scalability in dealing with various 
use cases (T4.1). Using the data emanating from the monitoring system, we will report the metrics pertaining to 
resource and energy usage predictions (T4.2). Specifically, we will present the reduction of SLA non-compliance 
in an application due to AI/ML resource management capabilities. We will also provide the knowledge model 
that will be developed to better understand the resource usage and availability (T4.2). We will highlight the 
performance of the algorithms for the placement, migration, and duplication of microservices on top of the CECC 
federated infrastructure (T4.3). Additionally, we will report the performance of the Network Programmability 
approach through its operationalization using SDN and CBN. Key metrics such as decreased downtime caused by 
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traffic redirection due to Network Programmability and its influence on SLA non-compliance will be provided. 
Finally, we will show that the implementation of the Network Programmability mechanism will reduce the time 
needed to update network resources (T4.4). 
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11 Annexes  
11.1 Annexe A – SD-WAN Northbound API Swagger Definition 
 

openapi: "3.0.0" 

info: 

 title: "SD-WAN Service" 

 description: "Northbound REST API of the SD-WAN controller" 

 version: "0.1.1" 

servers: 

 - url: "/" 

paths: 

 /overlays: 

   get: 

     summary: "Retrieve Created Overlays" 

     description: "Get details of created overlays of a given tenant ID. Can be filtered with 

overlays IDs." 

     parameters: 

       - name: "overlaysIDs" 

         in: "query" 

         schema: 

           type: "array" 

           items: 

             type: "string" 

         description: "List of overlays IDs. For filtering." 

       - name: "tenantid" 

         in: "query" 

         schema: 

           type: "string" 

           default: "1" 

         required: true 

         description: "The tenant ID" 

     responses: 

       200: 

         description: "A list of overlays" 

         content: 

           application/json: 

             schema: 

               type: array 

               items: 

                 $ref: '#/components/schemas/OverlayInfo' 

       400: 

         description: "Invalid request parameters." 

       401: 

         description: "Unauthorized access." 

       500: 

         description: "Internal server error." 

       503: 

         description: "Service unavailable. The server is temporarily unable to handle the request." 

   post: 

     summary: "Create Overlay" 

     description: "Create a new SD-WAN overlay." 

     requestBody: 

       required: true 

       content: 

         application/json: 

           schema: 
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             $ref: "#/components/schemas/OverlayConfig" 

     responses: 

       200: 

         description: "Overlay created successfully." 

       400: 

         description: "Invalid request payload." 

       401: 

         description: "Unauthorized access." 

       500: 

         description: "Internal server error." 

       503: 

         description: "Service unavailable. The server is temporarily unable to handle the request." 

   delete: 

     summary: "Remove Overlay" 

     description: "Delete an overlay by specifying either overlay name or overlay ID along with 

tenant ID." 

     requestBody: 

       required: true 

       content: 

         application/json: 

           schema: 

             oneOf: 

               - $ref: "#/components/schemas/OverlayReqID" 

               - $ref: "#/components/schemas/OverlayReqName" 

     responses: 

       200: 

         description: "Overlay removed successfully." 

       400: 

         description: "Invalid request payload." 

       401: 

         description: "Unauthorized access." 

       500: 

         description: "Internal server error." 

       503: 

         description: "Service unavailable. The server is temporarily unable to handle the request." 

 /overlays/default: 

   post: 

     summary: "Create Default Overlay" 

     description: "Create a default SD-WAN overlay with predefined default parameters." 

     parameters: 

       - name: "tenantid" 

         in: "query" 

         required: true 

         schema: 

           type: "string" 

           default: "1" 

     responses: 

       200: 

         description: "Default overlay created successfully." 

       208: 

         description: "Default overlay already exists."  

       400: 

         description: "Invalid request payload." 

       401: 

         description: "Unauthorized access." 

       500: 

         description: "Internal server error." 
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       503: 

         description: "Service unavailable. The server is temporarily unable to handle the request." 

 /enableServicePublicAccess: 

   post: 

     summary: "Enable service public access" 

     description: "Enable public access to a specific service." 

     requestBody: 

       required: true 

       content: 

         application/json: 

           schema: 

             $ref: '#/components/schemas/ServicePublicAccessParams' 

     responses: 

       200: 

         description: Success 

         content: 

           application/json: 

             schema: 

               type: object 

               properties: 

                 code: 

                   type: integer 

                 reason: 

                   type: string 

                 public_ip: 

                   type: string 

                 public_port: 

                   type: integer 

       400: 

         description: Bad Request 

         content: 

           application/json: 

             schema: 

               type: object 

               properties: 

                 code: 

                   type: integer 

                 reason: 

                   type: string 

       500: 

         description: Internal Server Error 

         content: 

           application/json: 

             schema: 

               type: object 

               properties: 

                 code: 

                   type: integer 

                 reason: 

                   type: string 

 /disableServicePublicAccess: 

   post: 

     summary: "Disable service public access" 

     description: "Disable public access to a specific service." 

     requestBody: 

       required: true 

       content: 
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         application/json: 

           schema: 

             $ref: '#/components/schemas/ServicePublicAccessParams' 

     responses: 

       200: 

         description: Success 

         content: 

           application/json: 

             schema: 

               type: object 

               properties: 

                 code: 

                   type: integer 

                 reason: 

                   type: string 

       400: 

         description: Bad Request 

         content: 

           application/json: 

             schema: 

               type: object 

               properties: 

                 code: 

                   type: integer 

                 reason: 

                   type: string 

       500: 

         description: Internal Server Error 

         content: 

           application/json: 

             schema: 

               type: object 

               properties: 

                 code: 

                   type: integer 

                 reason: 

                   type: string 

 /enableServiceInterClusterAccess: 

   post: 

     summary: "Enable service inter-cluster access" 

     description: "Enable inter-cluster access for a specific overlay." 

     requestBody: 

       required: true 

       content: 

         application/json: 

           schema: 

             $ref: '#/components/schemas/ServiceInterClusterAccessParams' 

     responses: 

       200: 

         description: Success 

         content: 

           application/json: 

             schema: 

               type: object 

               properties: 

                 code: 

                   type: integer 
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                 reason: 

                   type: string 

       400: 

         description: Bad Request 

         content: 

           application/json: 

             schema: 

               type: object 

               properties: 

                 code: 

                   type: integer 

                 reason: 

                   type: string 

       500: 

         description: Internal Server Error 

         content: 

           application/json: 

             schema: 

               type: object 

               properties: 

                 code: 

                   type: integer 

                 reason: 

                   type: string 

 /disableServiceInterClusterAccess: 

   post: 

     summary: "Disable service inter-cluster access" 

     description: "Disable inter-cluster access for a specific overlay." 

     requestBody: 

       required: true 

       content: 

         application/json: 

           schema: 

             $ref: '#/components/schemas/ServiceInterClusterAccessParams' 

     responses: 

       200: 

         description: Success 

         content: 

           application/json: 

             schema: 

               type: object 

               properties: 

                 code: 

                   type: integer 

                 reason: 

                   type: string 

       404: 

         description: Not Found 

         content: 

           application/json: 

             schema: 

               type: object 

               properties: 

                 code: 

                   type: integer 

                 reason: 

                   type: string 



 
D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources 

 
 

 

© AC3 2023  Page | 91  

       500: 

         description: Internal Server Error 

         content: 

           application/json: 

             schema: 

               type: object 

               properties: 

                 code: 

                   type: integer 

                 reason: 

                   type: string 

 /edges/configurations: 

   get: 

     summary: "Retrieve Edges Interfaces Configurations." 

     description: "Fetch the configurations of registered SD-WAN edge devices interfaces. Can be 

filtered based on device IDs." 

     parameters: 

       - name: "devicesids" 

         in: "query" 

         schema: 

           type: "array" 

           items: 

             type: "string" 

         description: "List of devices IDs." 

       - name: "tenantid" 

         in: "query" 

         schema: 

           type: "string" 

           default: "1" 

         required: true 

         description: "The tenant ID." 

     responses: 

       200: 

         description: "A list of All edges configurations." 

         content: 

           application/json: 

             schema: 

               type: array 

               items: 

                 $ref: '#/components/schemas/DeviceConfigInfo' 

       400: 

         description: "Invalid request parameters." 

       401: 

         description: "Unauthorized access." 

       500: 

         description: "Internal server error." 

       503: 

         description: "Service unavailable. The server is temporarily unable to handle the request." 

 /edges/interfacesconfiguration: 

   post: 

     summary: "Configure Edges Interfaces" 

     description: "Set up interfaces for SD-WAN edge devices. Configuring the Edges Interfaces is 

required to init the SD-WAN controller. This enables the edges. Its for specifying underlay wan 

ids, and subnets that are behind each edge (local subnetworks)." 

     requestBody: 

       required: true 

       content: 
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         application/json: 

           schema: 

             $ref: "#/components/schemas/DevicesConfigs" 

     responses: 

       200: 

         description: "Edge interfaces configured successfully." 

       400: 

         description: "Invalid request payload." 

       401: 

         description: "Unauthorized access." 

       500: 

         description: "Internal server error." 

       503: 

         description: "Service unavailable. The server is temporarily unable to handle the request." 

 /appIdentifiers: 

   get: 

     summary: "Retrieve Application Identifiers" 

     description: "Get details of application identifiers." 

     parameters: 

       - name: "tenantid" 

         in: "query" 

         required: true 

         schema: 

           type: "string" 

           default: "1" 

         description: "Tenant ID" 

       - name: "appsIdentifIDs" 

         in: "query" 

         schema: 

           type: "array" 

           items: 

             type: "string" 

         description: "List of applications identifiers IDs" 

     responses: 

       200: 

         description: "A list of application identifiers." 

         content: 

           application/json: 

             schema: 

               type: array 

               items: 

                 $ref: '#/components/schemas/AppIdentifierInfo' 

       400: 

         description: "Invalid request parameters." 

       401: 

         description: "Unauthorized access." 

       500: 

         description: "Internal server error." 

       503: 

         description: "Service unavailable. The server is temporarily unable to handle the request." 

   post: 

     summary: "Create Application Identifier" 

     description: "Create a new application identifier." 

     requestBody: 

       required: true 

       content: 

         application/json: 
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           schema: 

             $ref: "#/components/schemas/ApplicationIdentifier" 

     responses: 

       200: 

         description: "Application identifier created successfully." 

       400: 

         description: "Invalid request payload." 

       401: 

         description: "Unauthorized access." 

       500: 

         description: "Internal server error." 

       503: 

         description: "Service unavailable. The server is temporarily unable to handle the request." 

   delete: 

     summary: "Remove Application Identifier" 

     description: "Delete an application identifier by specifying either application identifier 

name or ID along with tenant ID." 

     requestBody: 

       required: true 

       content: 

         application/json: 

           schema: 

             oneOf: 

               - $ref: "#/components/schemas/AppIdentifReqID" 

               - $ref: "#/components/schemas/AppIdentifReqName" 

     responses: 

       200: 

         description: "Application identifier removed successfully." 

       400: 

         description: "Invalid request payload." 

       401: 

         description: "Unauthorized access." 

       500: 

         description: "Internal server error." 

       503: 

         description: "Service unavailable. The server is temporarily unable to handle the request." 

 /monitoring/overlay/latency/start: 

   post: 

     summary: "Start Overlay Tunnels Monitoring" 

     description: "Initiate the monitoring of all overlay tunnels' latency." 

     parameters: 

       - name: "tenantid" 

         in: "query" 

         required: true 

         schema: 

           type: "string" 

           default: "1" 

         description: "Tenant ID" 

     responses: 

       200: 

         description: "Overlay tunnels monitoring started successfully." 

       400: 

         description: "Invalid request parameters." 

       401: 

         description: "Unauthorized access." 

       500: 

         description: "Internal server error." 
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       503: 

         description: "Service unavailable. The server is temporarily unable to handle the request." 

 /monitoring/overlay/latency/stop: 

   post: 

     summary: "Stop Overlay Tunnels Monitoring" 

     description: "Stop the monitoring of all overlay tunnels' latency." 

     parameters: 

       - name: "tenantid" 

         in: "header" 

         required: true 

         schema: 

           type: "string" 

           default: "1" 

         description: "Tenant ID" 

     responses: 

       200: 

         description: "Overlay tunnels monitoring stopped successfully." 

       400: 

         description: "Invalid request parameters." 

       401: 

         description: "Unauthorized access." 

       500: 

         description: "Internal server error." 

       503: 

         description: "Service unavailable. The server is temporarily unable to handle the request." 

 /monitoring/overlay/latency: 

   get: 

     summary: "Retrieve Overlays Tunnels latency" 

     description: "Get latency for all overlay tunnels." 

     parameters: 

       - name: "tenantid" 

         in: "query" 

         required: true 

         schema: 

           type: "string" 

           default: "1" 

         description: "Tenant ID" 

     responses: 

       200: 

         description: "A list of overlays tunnels latency data." 

         content: 

           application/json: 

             schema: 

               type: array 

               items: 

                 $ref: '#/components/schemas/OverlayLatency' 

       400: 

         description: "Invalid request parameters." 

       401: 

         description: "Unauthorized access." 

       500: 

         description: "Internal server error." 

       503: 

         description: "Service unavailable. The server is temporarily unable to handle the request." 
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components: 

 schemas: 

   OverlayLatency: 

     type: object 

     properties: 

       overlay_name: 

         type: string 

         description: "Name of the overlay." 

       overlayid: 

         type: string 

         description: "Unique identifier for the overlay." 

       tunnels: 

         type: array 

         description: "List of tunnels associated with the overlay." 

         items: 

           $ref: '#/components/schemas/TunnelLatency' 

   TunnelLatency: 

     type: object 

     properties: 

       tunnel_key: 

         type: string 

         description: "Unique key for the tunnel." 

       tunnel_interface_name: 

         type: string 

         description: "Name of the Overlay tunnel interface." 

       edge: 

         type: string 

         description: "Edge That initiated the ping." 

       latency_history: 

         type: array 

         description: "History of latency measurements for the tunnel." 

         items: 

           type: number 

           format: float 

   AppIdentifierInfo: 

     type: object 

     properties: 

       device_name: 

         type: string 

         description: "Name of the edge device in which the rules will be matched." 

       tenantid: 

         type: string 

         description: "Tenant ID." 

       id: 

         type: string 

         description: "Unique identifier for the application Identifier." 

       application_name: 

         type: string 

         description: "Name of the application." 

       description: 

         type: string 

       category: 

         type: string 
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         description: "Category of the application (e.g., data-transfer)." 

       service_class: 

         type: string 

         description: "Service class of the application (e.g., high-throughput)." 

       importance: 

         type: string 

         description: "Importance level of the application." 

         enum: [LOW, MEDIUM, HIGH] 

       overlay_paths: 

         type: object 

         description: "Overlay paths configuration for the application." 

         properties: 

           paths_mode: 

             type: string 

             description: "Mode of the paths (e.g., static)." 

             enum: [static, dynamic] 

           paths: 

             type: array 

             description: "List of overlay paths." 

             items: 

               type: string 

           policy: 

             type: string 

             description: "Policy for dynamic overlay paths selection." 

           delay_threshold: 

             type: number 

             description: "Delay threshold." 

       rules: 

         $ref: "#/components/schemas/APPIdentifRule" 

       matches: 

         $ref: "#/components/schemas/APPIdentifMatch" 

   OverlayInfo: 

     type: object 

     properties: 

       id: 

         type: string 

         description: "Unique identifier of the overlay." 

       name: 

         type: string 

         description: "Overlay name." 

       type: 

         type: string 

         enum: [IPv4Overlay, IPv6Overlay] 

         description: "Type of the overlay." 

       underlay_wan_id: 

         type: string 

         description: "ID of the underlay WAN associated with the overlay." 

       mode: 

         type: string 

         enum: [VXLAN] 

         description: "Overlay Tunnel Mode (e.g., VXLAN)." 

       tenantid: 

         type: string 

         description: "Tenant ID." 

       interfaces: 

         type: array 

         description: "List of interfaces associated with the overlay." 
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         items: 

           $ref: '#/components/schemas/OverlayInterface' 

   OverlayInterface: 

     type: object 

     properties: 

       device_name: 

         type: string 

         description: "Device Name." 

       deviceid: 

         type: string 

       interface_name: 

         type: string 

         description: "Name of the LAN interface associated with Overlay Slice." 

   DeviceConfigInfo: 

     type: object 

     properties: 

       device_id: 

         type: string 

         description: "Unique identifier for the edge." 

       name: 

         type: string 

         description: "Name of the edge device." 

       description: 

         type: string 

       mgmtip: 

         type: string 

         description: "The IP address used for SBI gRPC Server." 

       connected: 

         type: boolean 

         description: "Indicates if the device is registered with the SD-WAN controller." 

       configured: 

         type: boolean 

         description: "Indicates if the device is configured." 

       enabled: 

         type: boolean 

         description: "Indicates if the device is enabled." 

       default_underlay_id: 

         type: string 

         description: "default WAN Id to be used in creating default overlay." 

       interfaces: 

         type: array 

         items: 

           $ref: '#/components/schemas/DeviceInterfConfigInfo' 

         description: "List of network interfaces for the device." 

       loopbackip: 

         type: string 

         description: "Loopback IP address of the device." 

       loopbacknet: 

         type: string 

         description: "Loopback network of the device." 

       managementip: 

         type: string 

         description: "The IP address used for SBI gRPC Server." 

   DeviceInterfConfigInfo: 

     type: object 

     properties: 

       name: 
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         type: string 

         description: "Name of the network interface." 

       mac_addr: 

         type: string 

         description: "MAC address of the network interface." 

       ipv4_addrs: 

         type: array 

         items: 

           type: string 

         description: "List of IPv4 addresses assigned to the network interface." 

       ipv6_addrs: 

         type: array 

         items: 

           type: string 

         description: "List of IPv6 addresses assigned to the network interface." 

       ext_ipv4_addrs: 

         type: array 

         description: "List of external IPv4 addresses assigned to the network interface." 

         items: 

           type: string 

       ext_ipv6_addrs: 

         type: array 

         description: "List of external IPv6 addresses assigned to the network interface." 

         items: 

           type: string 

       ipv4_subnets: 

         type: array 

         description: "List of IPv4 subnets behind this interface. (If type is lan)." 

         items: 

           $ref: '#/components/schemas/Ipv4Subnet' 

       ipv6_subnets: 

         type: array 

         description: "List of IPv6 subnets behind this interface. (If type is lan)." 

         items: 

           $ref: '#/components/schemas/Ipv6Subnet' 

       type: 

         type: string 

         description: "Type of the network interface." 

         enum: [lan, wan, unknown] 

       underlay_wan_id: 

         type: string 

         description: "ID of the underlay WAN associated to this network interface." 

   DevicesConfigs: 

     type: object 

     properties: 

       tenantid: 

         type: string 

         description: "Tenant ID." 

         example: "1" 

       default_underlay_id: 

         type: string 

         description: "default WAN Id to be used in creating default overlay." 

         example: "WAN-1" 

       devices_configs: 

         type: array 

         description: "The list of devices configurations." 

         items: 
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           $ref: "#/components/schemas/DeviceInterfacesConfig" 

         example: 

           - device_name: "ewED1" 

             interfaces: 

               - name: "ew_if1_wan2" 

                 type: "wan" 

                 underlay_wan_id: "WAN-1" 

               - name: "ew_if2_sboai" 

                 type: "wan" 

                 underlay_wan_id: "WAN-2" 

               - name: "el_if1_priv_net" 

                 type: "lan" 

                 ipv4_subnets: 

                   - gateway: "" 

                     subnet: "192.168.50.0/24" 

                   - gateway: "192.168.50.9" 

                     subnet: "10.168.55.0/24" 

           - device_name: "ewED2" 

             interfaces: 

               - name: "ew_if1_wan2" 

                 type: "wan" 

                 underlay_wan_id: "WAN-1" 

               - name: "ew_if2_sboai" 

                 type: "wan" 

                 underlay_wan_id: "WAN-2" 

               - name: "el_if1_priv_net" 

                 type: "lan" 

                 ipv4_subnets: 

                   - gateway: "" 

                     subnet: "192.168.70.0/24" 

                   - gateway: "192.168.70.9" 

                     subnet: "10.168.77.0/24" 

   DeviceInterfacesConfig: 

     type: object 

     properties: 

       device_name: 

         type: string 

         description: "Device name to configure its interfaces." 

       interfaces: 

         type: array 

         items: 

           $ref: "#/components/schemas/InterfaceConfig" 

   InterfaceConfig: 

     type: object 

     properties: 

       name: 

         type: string 

         description: "Name of the interface." 

       type: 

         type: string 

         description: "Type of interface (e.g., wan, lan)." 

         enum: [lan, wan] 

       underlay_wan_id: 

         type: string 

         description: "ID of the underlay WAN." 

       ipv4_addrs: 

         type: array 
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         items: 

           type: string 

         description: "List of IPv4 addresses." 

       ipv6_addrs: 

         type: array 

         items: 

           type: string 

         description: "List of IPv6 addresses." 

       ipv4_subnets: 

         type: array 

         items: 

           $ref: "#/components/schemas/Ipv4Subnet" 

         description: "List of IPv4 subnets." 

       ipv6_subnets: 

         type: array 

         items: 

           $ref: "#/components/schemas/Ipv6Subnet" 

         description: "List of IPv6 subnets." 

       ext_ipv4_addrs: 

         type: array 

         items: 

           type: string 

         description: "List of external IPv4 addresses." 

       ext_ipv6_addrs: 

         type: array 

         items: 

           type: string 

         description: "List of external IPv6 addresses." 

   Ipv4Subnet: 

     type: object 

     properties: 

       subnet: 

         type: string 

         description: "IPv4 subnet." 

       gateway: 

         type: string 

         description: "Gateway address for the IPv4 subnet." 

     description: "IPv4 subnet, and the gateway to this subnet." 

   Ipv6Subnet: 

     type: object 

     properties: 

       subnet: 

         type: string 

         description: "IPv6 subnet." 

       gateway: 

         type: string 

         description: "Gateway address for the IPv6 subnet." 

     description: "IPv6 subnet, and the gateway to this subnet." 

   OverlayConfig: 

     type: object 

     properties: 

       tenantid: 

         type: string 

         description: "The ID of the tenant." 

         example: "1" 

       overlay_name: 

         type: string 



 
D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources 

 
 

 

© AC3 2023  Page | 101  

         description: "The name of the overlay." 

         example: "Overlay-100" 

       overlay_type: 

         type: string 

         description: "The type of the overlay." 

         enum: [IPv4Overlay, IPv6Overlay] 

         example: "IPv4Overlay" 

       overlay_tunnel_mode: 

         type: string 

         description: "The tunneling mode of the overlay." 

         enum: [VXLAN] 

         example: "VXLAN" 

       overlay_slices: 

         type: array 

         description: "The slices of the overlay. i.e. the lan interfaces behind the edge that will 

be assigned to the overlay." 

         items: 

           $ref: "#/components/schemas/OverlaySlice" 

         example: 

           - device_name: "ewED1" 

             device_LAN_interface: "el_if1_priv_net" 

             undelay_WAN_id: "WAN-1" 

           - device_name: "ewED2" 

             device_LAN_interface: "el_if1_priv_net" 

             undelay_WAN_id: "WAN-1" 

     required: ["tenantid", "overlay_name", "overlay_type", "overlay_tunnel_mode", 

"overlay_slices"] 

   OverlaySlice: 

     type: object 

     properties: 

       device_name: 

         type: string 

         description: "Edge device name associated with the slice." 

       device_LAN_interface: 

         type: string 

         description: "The LAN interface of the edge device to be assigned to the slice." 

       undelay_WAN_id: 

         type: string 

         description: "The ID of the underlay WAN interface. The overlay will be created over this 

underlay." 

     required: ["device_name", "device_LAN_interface", "undelay_WAN_id"] 

   ApplicationIdentifier: 

     type: object 

     properties: 

       device_name: 

         type: string 

         description: "Name of the device." 

         example: "ewED1" 

       tenantid: 

         type: string 

         description: "Tenant ID." 

         example: "1" 

       application_name: 

         type: string 

         description: "Name of the application." 

         example: "IIoT-App-1" 

       description: 
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         type: string 

         description: "Description of the application." 

         example: "Internet of Things application" 

       category: 

         type: string 

         description: "Category of the application." 

         example:  "data-transfer" 

       service_class: 

         type: string 

         description: "Service class of the application." 

         example:  "high-throughput" 

       importance: 

         type: string 

         description: "Importance of the application." 

         enum: [LOW, MEDIUM, HIGH] 

       rules: 

         $ref: "#/components/schemas/APPIdentifRule" 

       overlays: 

         $ref: "#/components/schemas/AppIdentifOverlays" 

       match: 

         $ref: "#/components/schemas/APPIdentifMatch" 

     required: 

       - device_name 

       - tenantid 

       - application_name 

 
 
   AppIdentifOverlays: 

     type: object 

     properties: 

       mode: 

         type: string 

         description: "Mode of Overlay path selection (static/dynamic)." 

         enum: [static, dynamic] 

       overlay_paths: 

         type: array 

         description: "List of static paths." 

         items: 

           type: string 

         example: ["Overlay-100"] 

       policy: 

         type: string 

         description: "Policy for dynamic paths." 

       delay_threshold: 

         type: number 

         description: "Delay threshold for dynamic paths." 

   APPIdentifRule: 

     type: object 

     minProperties: 1 

     properties: 

       source_ip: 

         type: string 

         description: "Source IP address." 

         example: "" 

       destination_ip: 

         type: string 
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         description: "Destination IP address." 

         example: "10.168.77.53" 

       protocol: 

         type: string 

         description: "Protocol." 

         enum: [TCP, UDP] 

         example: "" 

       source_port: 

         type: string 

         description: "Source port." 

         example: "" 

       destination_port: 

         type: string 

         description: "Destination port." 

         example: "" 

   APPIdentifMatch: 

     type: object 

     properties: 

       match_name: 

         type: string 

         description: "Name of the match." 

       match_attributes: 

         type: array 

         items: 

           $ref: "#/components/schemas/APPIdentifMatchAttributes" 

   APPIdentifMatchAttributes: 

     type: object 

     properties: 

       attribute_name: 

         type: string 

         description: "Name of the attribute." 

       attribute_value: 

         type: string 

         description: "Value of the attribute." 

   OverlayReqName: 

     type: object 

     properties: 

       tenantid: 

         type: string 

         default: "1" 

       overlay_name: 

         type: string 

         example: "Overlay-100" 

   OverlayReqID: 

     type: object 

     properties: 

       tenantid: 

         type: string 

         default: "1" 

       overlayid: 

         type: string 

   AppIdentifReqID: 

     type: object 

     properties: 

       tenantid: 

         type: string 

         default: "1" 
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       app_identif_id: 

         type: string 

   AppIdentifReqName: 

     type: object 

     properties: 

       tenantid: 

         type: string 

         default: "1" 

       app_identif_name: 

         type: string 

   ServicePublicAccessParams: 

     type: object 

     properties: 

       edge_name: 

         type: string 

         description: "Name of the edge device." 

       tenantid: 

         type: string 

         default: "1" 

       service_ip: 

         type: string 

       service_port: 

         type: string 

       service_protocol: 

         type: string 

         enum: [TCP, UDP] 

   ServiceInterClusterAccessParams: 

     type: object 

     properties: 

       overlay_id: 

         type: string 

       tenantid: 

         type: string 

         default: '1' 

       service_ip: 

         type: string 

       service_port: 

         type: string 

       service_protocol: 

         type: string 

         enum: [TCP, UDP] 

     required: ["overlay_id", "tenantid"] 
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