

AC3 project has received funding from European Union’s Horizon Europe research and innovation
programme under Grant Agreement No 101093129.

D.4.1 Initial report on mechanisms that enable green-

oriented zero touch management of CECC resources -

Initial

Document Summary Information

Project Identifier HORIZON-CL4-2022-DATA-01. Project 101093129

Project name Agile and Cognitive Cloud-edge Continuum management

Acronym AC3

Start Date January 1, 2023 End Date December 31, 2025

Project URL www.ac3-project.eu

Deliverable D4.1. Initial report on mechanisms that enable green-oriented zero touch
management of CECC resources - Initial

Work Package WP4

Contractual due date 30th June 2024 Actual submission date 30th June 2024

Type R – Document, Report Dissemination Level PU – Public

Lead Beneficiary IBM

Responsible Author Amadou Ba (IBM)

Contributors Amadou Ba (IBM), Diego Tsutsumi (IBM), Adlen Ksentini (EUR), Ayoub Mokhtari (EUR),
Mohamed Mekki (EUR), Sofiane Messaoudi (EUR), Kostas Ramantas (IQU), Ioannis

http://www.ac3-project.eu/

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 2

Zenginis (IQU), Ben Capper (RHT), Ray Carroll (RHT), Ryan Jenkins (RHT), Christos
Verikoukis (ISI/ATH), Elias Dritsas (ISI/ATH), Vasilis Avgerinos (ISI/ATH), Athanasios
Kordelas (CTX), George Tsolis (CTX), John Beredimas (CTX), Alabi Rasheed (FIN),
Ibrahim Afolabi (FIN), Vrettos Moulos (UPR), Dimitrios Amaxilatis (SPA), Nikos Tsironis
(SPA), Ali Nikoukar (ION), Maria Tsoli (UPR), Giannis Koulopoulos (UPR), Giannis
Mpekos (UPR), Podimata Anna (UPR)

Peer reviewer(s) Ibrahim Afolabi (FIN), Nikos Tsironis (SPA)

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 3

Revision history (including peer reviewing & quality control)

Version Issue Date
%

Complete
Changes Contributor(s)

V1.0 04/03/2024 5 Initial structure (ToC) All partners

V2.0 15/04/2024 50 Initial contributions Section 4 (EUR, CTX, UPR, SPA,
RHT)

Section 5.1 (FIN)

Section 5.2 (SPA)

Section 5.3.1 (IBM)

Section 5.3.2 (EUR)

Section 5.3.3 (IBM)

Section 5.3.4 (ATH/ISI)

Section 6 (IQU)

Section 7 (RHT)

V3.0 07/05/2024 90 Final contributions Section 1 (IBM)

Section 2 (IBM)

Section 3 (IBM)

Section 4 (EUR, CTX, UPR, SPA,
RHT)

Section 5.1 (FIN)

Section 5.2 (SPA)

Section 5.3.1 (IBM)

Section 5.3.2 (EUR)

Section 5.3.3 (IBM)

Section 5.3.4 (ATH/ISI)

Section 6 (IQU)

Section 7 (RHT)

Section 8 (IBM)

V4.0 16/05/2024 95 Internal review Ibrahim Afolabi (FIN), Nikos
Tsironis (SPA)

V4.1 30/05/2024 98 Technical Manager review Adlen Ksentini (EUR)

V5.0 15/06/2024 100 Project Coordinator review Christos Verikoukis (ATH/ISI)

Disclaimer

The content of this document reflects only the author’s view. Neither the European Commission nor the HaDEA
are responsible for any use that may be made of the information it contains.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the AC3 consortium make no warranty of any kind with regard to this material including, but not
limited to the implied warranties of merchantability and fitness for a particular purpose.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 4

Neither the AC3 consortium nor any of its members, their officers, employees or agents shall be responsible or
liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the AC3 Consortium nor any of its members,
their officers, employees or agents shall be liable for any direct or indirect or consequential loss or damage
caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© AC3 Consortium. This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation or both. Reproduction is authorised provided the source is acknowledged.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 5

Table of Contents

1 Executive Summary .. 10
2 Introduction .. 11

2.1 Scope .. 11
2.2 Target Audience ... 11
2.3 Mapping AC3 Outputs .. 11
2.4 Deliverable Overview and Report Structure .. 14

3 AC3 Architecture and WP4 Components ... 15
4 Resource Discovery and Monitoring .. 17

4.1 Overview of the Monitoring System for the CECCM ... 17
4.2 Unified Monitoring Data Model and Monitoring Data Collection ... 17

4.2.1 Monitoring Data ... 17
4.2.2 Enhanced Resource Profile Schema ... 17
4.2.3 Metrics for Monitoring Data Processing Components .. 20
4.2.4 Data Collection ... 21
4.2.5 Data Collection Interfaces for Networking... 21

4.3 Network Monitoring ... 22
4.3.1 State-of-the-Art on Data Collection Interfaces for Computing .. 23

4.4 Resource Discovery, Unified Resource Discovery Communication ... 25
4.4.1 Resource Discovery .. 26

5 AI/ML Models for Prediction and Resource Management .. 27
5.1 State-of-the-Art .. 27
5.2 Data, Computing and Networking Metrics .. 27
5.3 AI/ML to Predict Infrastructure Usage ... 30

5.3.1 State-of-the-Art .. 30
5.3.2 XAI-Enabled Fine Granular Resources Autoscaler .. 31
5.3.3 XAI for Prediciton of Infrastructure Usage ... 36
5.3.4 GNN for Spatio-Temporal Prediction ... 44

6 Decision Enforcement with Reinforcement Learning .. 49
6.1 Reinforcement Learning for Resource Allocation .. 49

6.1.2 Future Work on Reinforcement Learning for Energy-Aware Resource Allocation 56
7 Network Programmability .. 57

7.1 State-of-the Art on Network Programmability .. 57
7.1.1 Software Defined Networking .. 57
7.1.2 Kubernetes-based Network Orchestration .. 58

7.2 Proposed Hybrid Architecture for Multi-layer Network Programmability .. 59
7.2.1 SD-WAN .. 61
7.2.2 Kubernetes-based Network Orchestration .. 67

8 Conclusions ... 78
9 References .. 80
10 Useful links ... 85
11 Annexes .. 86

11.1 Annexe A – SD-WAN Northbound API Swagger Definition .. 86

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 6

List of Figures

Figure 1: High level architecture of AC3 ... 15

Figure 2: The management plane of AC3 ... 16

Figure 3: ADC metrics exporter or observability exporter (COE) ... 21

Figure 4: ADC metrics exporter or observability exporter (COE) ... 22

Figure 5: Skupper architecture ... 22

Figure 6: Illustration of submariner capability .. 23

Figure 7: Zero-touch service management framework architecture... 32

Figure 8: Shapley values provided by the SHAP method ... 34

Figure 9: Highest values of CPU and RAM allocated to an instance of the applications in relation to the number
of concurrent clients .. 35

Figure 10: Mean response time in relation to the number of concurrent clients ... 36

Figure 11: TFT architecture for prediction ... 37

Figure 12: Metrics used .. 40

Figure 13: Latency prediction results (mean) .. 41

Figure 14: Explainability for the predicted latency (mean).. 42

Figure 15: Latency prediction results (p75) ... 42

Figure 16: Explainability for the predicted latency (p75) ... 43

Figure 17: Latency prediction results (p95) ... 43

Figure 18: Explainability for the predicted latency (p95) ... 44

Figure 19: Model architecture.. 46

Figure 20: Aggregation layer .. 46

Figure 21: Mixer Layer .. 47

Figure 22: System model .. 50

Figure 23: RL system ... 53

Figure 24: Average CPU efficiency for service type I ... 54

Figure 25: Average CPU efficiency for service type II .. 54

Figure 26: Average memory usage efficiency for service type II ... 55

Figure 27: Average memory usage efficiency for service type IV .. 55

Figure 28: Average delay for service type III .. 56

Figure 29: Software Defined Networking and Container-Based Networking working together 60

Figure 30: CECC SD-WAN Overall Architecture .. 61

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 7

Figure 31: Application aware routing ... 63

Figure 32: Service traffic identifier creation process ... 64

Figure 33: Overlay creation time .. 66

Figure 34: E2E overlay creation time ... 66

Figure 35: SD-WAN edge CPU consumption .. 67

Figure 36: SD-WAN edge RAM consumption ... 67

Figure 37: Network management operator ... 68

Figure 38: Skupper configuration ... 72

Figure 39: Submariner configuration ... 73

Figure 40: Multiple skupper routers .. 74

Figure 41: Multiple gateways per cluster ... 75

Figure 42: Network monitoring .. 77

List of Tables

Table 1: Adherence to AC3 GA Deliverable & Tasks Descriptions .. 11

Table 2: List of the actual counters .. 28

Table 3: Results .. 48

Table 4: SLA requirements and Gn parameters ... 51

Table 5: SAC parameters .. 53

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 8

Glossary of terms and abbreviations used

Abbreviation/Term Description

AC3 Agile and Cognitive Cloud-edge Continuum

ADC Application Delivery Controller

AI Artificial Intelligence

API Application Programming Interface

ADM Application Delivery Management

CECC Cloud Edge Computing Continuum

CECCM Cloud Edge Computing Continuum Manager

CNI Container Network Interface

CPE Customer Platform Engineering

CPX Container Proxy

COE Customer Observability Exporter

CRD Customer Resource Descriptor

DL Deep Learning

DRL Deep Reinforcement Learning

GNN Graph Neural Network

ISP Internet Service Providers

LCM Life Cycle Management

LIME Local Interpretable Model-agnostic Explanations

LMS Local Management System

LSTM Long Short-Term Memory

ML Machine Learning

NBI Northbound Interface

OCM Open Cluster Management

PaaS Platform as a Service

QoS Quality of Service

QoE Quality of Experience

RL Reinforcement Learning

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 9

SBI Southbound Interface

SDN Software Defined Network

SD-WAN Software Defined Wide Area Network

SHAP SHapley Additive exPlanations

SLA Service Level Agreements

SLO Service Level Objectives

SNMP Simple Network Management Protocol

SR Segment Routing

TFT Temporal Fusion Transformer

TLS Transport Layer Security

VoIP Voice over Internet Protocol

VPN Virtual Private Network

VNF Virtual Network Function

VRF Virtual Routing and Forwarding

XAI Explainable AI

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 10

1 Executive Summary

The transition from traditional IT to the CECC concept requires the creation of frameworks and resource
management capabilities capable of efficiently managing and continuously optimizing resources. This serves as
the core impetus behind the AC3 project, which aims to introduce a pioneering CECC management framework
enabling scalability, agility, and efficiency in resource management. At the heart of the AC3 project lies the
CECCM, a fundamental component facilitating the advancement of application LCM and configuration through
self-management and self-configuration, all while satisfying the SLA. To realize this objective, AC3 considers
recent breakthroughs in AI and ML, particularly eXplainable AI (XAI), to deliver an efficient LCM system for CECC
resources, ensuring minimal latency and SLA compliance. WP4 is the key pillar of AC3. It is the place where AI/ML
models for resource management are developed (T4.2), and where LCM decisions for resource management are
enforced (T4.3), both enabled by the data emanating from the resource discovery and monitoring of the
federated infrastructures (T4.1). Additionally, Network Programmability components are developed in this WP4
to ensure dynamic and flexible traffic management for microservices in the CECC infrastructure. This is achieved
while maintaining application SLAs through dynamic updates of routes and resources (T4.4). This deliverable
outlines our initial efforts regarding WP4, focusing on resource management across CECC. To set the context, we
provide an overview of the monitoring system, highlighting the importance of collecting relevant metrics to build
the AI-based LCM. The primary areas of innovation for the proposed mechanisms begin with a unified monitoring
data model, emphasizing the need for a comprehensive schema that captures dynamic resource states (CPU,
memory, storage), classifies resources by type (edge, cloud), tracks energy sources, and determines geographical
locations. Then, we architect a mechanism for collecting the monitored data. We explain the data collection
processes for both computing and networking. Specifically, we provide data including various performance,
health, and usage metrics at the network and application levels. We list the operational and application-specific
metrics required for the AI-based LCM. Furthermore, we describe the resource discovery mechanism, focusing
on the interaction between resource exposure and discovery (T4.1).

After data collection, we develop efficient approaches for resource management (T4.2). The first combines
XGBoost with SHAP for explainable detection of SLA non-compliance. The second performs spatio-temporal
prediction of infrastructure usage with the combination of a Graph Neural Network and a sequence-to-sequence
learner. The third is an explainable prediction approach that predicts latency and identifies the influence of
various features on the prediction. It leverages the Temporal Fusion Transformer (TFT). The TFT is an attention-
based architecture providing multi-horizon forecasting and interpretability. The advantage of TFT lies in its multi-
horizon prediction, providing users with access to estimates across the entire path, allowing them to optimize
their actions at multiple steps in the future (T4.2). For example, after latency prediction, users can assess SLA
compliance and identify potential responsible metrics like CPU or memory or both, in case of non-compliance.
This facilitates implementing corrective measures, such as increasing CPU, memory, or both (T4.3). After
infrastructure availability prediction, a mechanism for runtime management of microservices, such as resource
autoscaling and/or duplication of micro-services has been developed (T4.3), we use an RL approach based on a
Soft Actor-Critic (SAC) agent. This will allow for proactive orchestration of microservices based on the prediction
results. Furthermore, we report our initial work on dynamic and flexible traffic management through Network
Programmability (T4.4). With regard to Network Programmability, we focus on Software Defined Networking
(SDN) and Container-Based Networking (CBN) (Kubernetes), where we provide the possibility for proactive and
reactive network configuration.

Major steps have been taken to develop and implement the fundamental building blocks required in WP4. These
steps also lay the foundation for the remaining work in WP4 where the energy aspect will be integrated for the
consolidation of both resource prediction and management mechanisms and realize the ultimate objective of
green-oriented zero touch management of CECC resources.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 11

2 Introduction
2.1 Scope

This document represents a public deliverable from AC3's WP4, offering insights into our ongoing progress,
notable achievements, and the innovative AI-driven algorithms developed for resource management, with a
strong focus on explainability. This deliverable reviews state-of-the-art monitoring systems, AI methodologies
applied to infrastructure availability prediction and management, and advancements in Network
Programmability.

2.2 Target Audience

This deliverable is tailored for stakeholders involved in AI for resource management across hybrid, multi-cloud,
and cloud-edge environments. It details the implementation of innovative AI techniques for predicting
infrastructure availability and managing resource usage effectively.

2.3 Mapping AC3 Outputs

The purpose of this section is to map AC3 Grant Agreement commitments, both within the formal Deliverable
and Task description, against the project’s respective outputs and the work performed.

Table 1: Adherence to AC3 GA Deliverable & Tasks Descriptions

AC3 GA
Component

Title

AC3 GA Component
Outline

Respective Document
Chapter(s)

Justification

DELIVERABLE

D4.1. Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

TASKS

Task 4.1
Resource
discovery and
monitoring of
the federated
resources

Define the necessary
components and
mechanisms to monitor
and discover the federated
CECC infrastructure
resources, including the
far edge.

Determine the unified data
model that needs to be
exchanged between the
different infrastructure
providers. Two models will
be considered, one for
computing and one for
networking.

Section 4

The main building blocks present
in the GA and pertaining to Task
4.1 have been addressed in
Section 4.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 12

The data model for
computing will be
extended to include the
available computing
resources and information
on the energy model used
by the DC (green or brown)
and the best periods suited
for energy.

Defines a unified discovery
resource communication
model, allowing the
CECCM to have a complete
picture of available
resources on the federated
CEC.

Define scalable data
collection and monitoring
for the federated
resources that are in use
by the CECCM.

Task 4.2 AI/ML
models for
resource
management

Develop ML models in
order to predict
infrastructure usage,
energy usage, and
resource availability,
including the far edge.

ML algorithms will
focusing mainly on using
explainable models.

State-of-the-art
explainable models will be
tested and used.

Section 5

The main building blocks present
in the GA and pertaining to Task
4.2 have been addressed in
Section 5. The remaining work
such as the consideration of the
energy aspect will be addressed in
the deliverable D4.2.

Task 4.3 Green-
oriented LCM
decisions for
resource
management

Devise the necessary
algorithms that take as
inputs the resource
prediction models to
guarantee the
application’s SLA.

Section 6

The main building blocks present
in the GA and pertaining to Task
4.3 have been addressed in
Section 6. The remaining work will
be addressed in the deliverable
D4.2.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 13

Devise the necessary
algorithms that take as
inputs the resource
prediction to optimize
resource usage for the
federated CECC as well as
the energy consumption.

 The envisioned solutions
could be based on multi-
objective optimization
theory or ML- based
decision-making solutions,
such as Reinforcement
Learning (RL).

Devise algorithms that
decide when to migrate
microservice in order to
optimize energy
consumption.

Build a knowledge
mechanism in order to use
the explainable models to
evaluate the impacts of
the considered decisions
and derive their efficiency.

Task 4.4
Networking
programmability
of CECC

Embrace two technologies
SD-WAN and CFN, for
WAN and edge,
respectively.

Define the necessary
mechanisms to allow the
programmability of both
networks by selecting or
extending existing SDN
controllers.

Update the CECCM
northbound API to allow
the application developer
to request an update of
the network connectivity.

Improve the CECCM to
allow for conflict-

Section 4, Section 7

The main building blocks present
in the GA and pertaining to Task
4.4 have been addressed in
Section 4, Section 7.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 14

resolution solution that
solves contradictory
requests or requests that
may impact other
deployed applications.

2.4 Deliverable Overview and Report Structure

In this section, we provide the description of D4.1 structure, outlining the respective sections and their content.

Section 3 presents the AC3 architecture and WP4 components with special focus on the four tasks.

Section 4 presents the resource discovery and monitoring mechanism.

Section 5 focuses on the AI/ML models for infrastructure usage prediction. Special consideration has been given
to XAI.

Section 6 provides the decision enforcement mechanism with particular emphasis on a reinforcement learning
approach characterized by the Soft Actor-Critic for resource management.

Section 7 is dedicated to Network Programmability.

Section 8 concludes the deliverable D4.1 and introduces the next steps.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 15

3 AC3 Architecture and WP4 Components

Figure 1 presents the high-level architecture of AC3, composed of three planes and characterized by the User
Plane, the Management Plane, and the Infrastructure Plane.

• User Plane: it includes the Service Catalogue, the KPI Collection and Exposure mechanism, and the
Ontology along with the Semantic-aware Reasoner.

• Management Plane: it represents the fundamental aspect of the CECCM, which deals with the Data
Management, the Applications and Resources Management, along with the Adaptation and Federation
layer.

• Infrastructure Plane: it is composed of cloud, edge and network resources.

Figure 1: High level architecture of AC3

Figure 2 illustrates the Management Plane showcasing the primary building blocks of WP4. These include the
Resource Exposure, Discovery, and Broker alongside the Adaptation Gateway (T4.1), the AI-based CEC Resource
Profile (T4.2), the Decision Enforcement (T4.3), and the Network (T4.4). In this deliverable, we delve into the
inner workings of these blocks and present the approaches developed for their operationalization.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 16

Figure 2: The management plane of AC3

In T4.1 we develop the resource discovering and monitoring approach. T4.1 allows to get the data that will be
used in the subsequent tasks. T4.2 is where the XAI approaches for infrastructure usage prediction will be
developed. T4.3 addresses resource management using a reinforcement learning approach. T4.4 performs
Network Programmability.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 17

4 Resource Discovery and Monitoring

We provide in this section an overview of the monitoring system, a unified monitoring data model, and the
mechanism for collecting the monitored data. We explain the data collection processes for both computing and
networking.

4.1 Overview of the Monitoring System for the CECCM

Monitoring is a critical component of the CECCM, particularly the AI-based LCM. Indeed, several components of
the AI-based LCM rely on the monitoring information collected on the infrastructures as well as on the
applications. First, the AI-based application profile uses the collected information on the applications, such as
computing resources (CPU, memory, storage) consumption, energy consumed, traffic handled during a period,
etc. Using this information, it is possible to build application profiles that will be employed by the AI-based LCM
for application management and life-cycle optimization, such as scale down or up resources, or do migration.
Second, the AI-based CEC resource profile uses the monitoring information to update the profile of CEC resource
used by the CECCM. As CECCM uses resources from the federation, a profile describing in real-time the CEC
resource status and profile is vital. The AI-based CEC resource profile will build on the monitoring information
using the status of the CEC resource, that is, available computing resources (CPU, memory, storage), type of
resource (edge, cloud, networks, far edge), type of energy used (green or brown), the covered locations, etc. All
this information will also be used to predict the evolution of CEC resource usage. The AI-based LCM will also use
the CEC resources for LCM decisions, such as the initial placement of applications, migration of applications for
energy optimization, etc. Both profiles are combined for better resource optimization and SLA guarantee for
applications. It should be noted that the monitoring components are activated once a CEC resource from the
federation is selected by the CECCM (via the broker). The monitoring component is configured to consume the
NBI as exposed by the LMS of the CEC resource.

4.2 Unified Monitoring Data Model and Monitoring Data Collection

4.2.1 Monitoring Data

To effectively build the resource profile that leverages monitoring information to detail the status and
characteristics of computing resources, a comprehensive schema that integrates all relevant attributes should
be considered. This schema should not only capture the dynamic state of the resources such as CPU, memory,
and storage but also classify the resources by type (e.g., edge, cloud), track the source of energy (green or brown),
and pinpoint geographical locations.

4.2.2 Enhanced Resource Profile Schema

4.2.2.1 Schema Overview

The schema is designed to provide a detailed snapshot of resource utilization and characteristics across different
infrastructure types, energy sources, and locations. This will help in optimizing resource allocation, ensuring
sustainability, and improving deployment strategies.

{
 "resourceId": "unique_identifier",
 "resourceType": {
 "computing": "VM/Container/Server",
 "infrastructure": "Edge/Cloud/Far Edge",
 "network": "5G/Wi-Fi/Fiber"
 },
 "location": {

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 18

 "latitude": "decimal_degrees",
 "longitude": "decimal_degrees",
 "region": "string"
 },
 "energy": {
 "type": "Green/Brown",
 "consumption": "watts"
 },
 "computingResources": {
 "cpu": {
 "totalCores": "number",
 "usedCores": "number",
 "usagePercentage": "percentage"
 },
 "memory": {
 "total": "bytes",
 "used": "bytes",
 "free": "bytes"
 },
 "storage": {
 "total": "bytes",
 "used": "bytes",
 "free": "bytes"
 }
 },
 "network": {
 "bandwidth": {
 "uplink": "Mbps",
 "downlink": "Mbps"
 },
 "latency": "milliseconds"
 },
 "timestamp": "ISO 8601 format"
 }

The aforementioned schema represents an initial scenario, focusing on fundamental characteristics for
monitoring implementation and resources. However, this schema is designed to be extensible, allowing for the
inclusion of a wide range of parameters. These additional parameters can enhance the capabilities of AI-based
LCM used for more precise matchmaking. By enriching the profile with detailed attributes, the LCM can more
accurately identify and select the best-suited resources from within the federation.

The parameters are organized into categories to enhance manageability and improve readability. Additionally,
applications can retrieve only the relevant portion of the JSON file needed for a specific task. This approach not
only reduces parsing time but also simplifies the process of querying parameters.

The list of the parameters are:

Resource Identification:

• resourceId: A unique identifier for each resource to track different monitoring points.

• resourceType: Classifies the resource into categories such as computing (e.g., VM, container),
infrastructure type (e.g., edge, cloud), and network type.

Location:

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 19

• Geographical data: Essential for distributed systems, particularly in edge computing, to optimize data
routing and compliance with local regulations.

Energy:

• Type of energy: This is crucial for sustainability reports and operational optimizations, distinguishing
between green (renewable) and brown (non-renewable) energy sources.

• Consumption: Measures how much energy each resource uses, important for cost and environmental
impact assessments.

Computing Resources:

• Details the allocation and usage of CPU, memory, and storage, which are critical for performance
monitoring and capacity planning.

Network Characteristics:

• Bandwidth and latency: These metrics are vital for evaluating network health and performance,
particularly in environments where real-time data processing is crucial. Another aspect of it is the
necessity in some orchestrators for minimum latency (for example Kubernetes has such a limitation).

Timestamp:

• For time series analysis of resource utilization and tracking changes over time.

On top of that, data will also be monitored by the NetScaler instance. The NetScaler instance refers to a specific
deployment of NetScaler, which is a networking product. These data include various metrics related to
performance, health, and usage on network and application level. To gather and analyze NetScaler analytics
information, the ADM, SNMP monitoring solutions, or custom scripts that query NetScaler APIs can be used. The
monitored metrics include:

• Application Performance: Monitoring application-specific metrics such as database query times, cache
hit rates, response time, error rate, and transaction continuity can help ensure that applications hosted
outside of the NetScaler appliance are performing as expected.

• Response Time: This is the time taken from NetScaler to respond to a client request. It includes the time
spent processing the request internally and communicating with backend servers. Monitoring response
time ensures that programs are attentive to person requests.

• Transaction Throughput: Transaction throughput measures the charge at which the NetScaler
equipment procedures customer requests and forwards the information to backend servers. Monitoring
transaction throughput allows discovering bottlenecks and guaranteeing that the NetScaler can handle
the current workload efficiently.

• Error Rates: tracks the frequency of errors occurring within the application infrastructure, such as
connection failures, HTTP errors, SSL errors, etc. Common mistakes include HTTP errors (e.g., 404 Not
Found) and application-particular errors. High error rates may suggest troubles with the application or
backend servers.

• SSL connections: For HTTPS traffic, monitoring SSL connections can provide insights into SSL handsake
operations, certificate expiration, and SSL cipher usage.

• SSL Handshake Time: ensure that SSL/TLS connections are installed quickly and efficiently.

• Connection Persistence: monitoring connection stability guarantees that customer requests are
consistently routed to the same backend server across more than one requests. This is vital for programs
that require session endurance like shopping carts in e-commerce websites.

• Additional generic metrics that can be used include:

• Throughput: measures the amount of data passing through NetScaler at any time.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 20

• Network latency: measures the time it takes for a data packet to travel from the client to the server and
back. High latency can negatively affect the user experience, so monitoring and optimization is
important.

• Connection Stats: monitoring metrics like active connections, connection failures, connection retries,
and connection timeouts can help identify potential communication issues.

• Security metrics: monitoring security-related metrics such as DDoS attack attempts, intrusion attempts,
and VPN usage can help identify and mitigate security threats.

• Load Balancer Metrics: When the NetScaler appliance is used as a load balancer, monitoring metrics
such as server health, request delivery, and server response time can help improve the performance of
the load balancer.

4.2.3 Metrics for Monitoring Data Processing Components

The Data Processing components within the AC3 Data Management Platform as a Service (PaaS) are engineered
to supply a dual set of metrics that are instrumental to the AC3 Monitoring Infrastructure. These metrics are
pivotal for maintaining and enhancing the system's performance and reliability. By meticulously monitoring these
metrics, AC3 can ensure that its Data Management PaaS remains robust, efficient, and responsive to the evolving
needs of its users, thereby maintaining a high standard of service quality.

4.2.3.1 Operational Metrics

The initial category of metrics focuses on the operational aspects of data processing, specifically addressing the
volume, velocity, and latency. Several specific metrics are gathered from the Data Processing components to
provide a comprehensive view of the system's performance:

• Volume: This metric measures the quantity of data processed by each component within a given
timeframe. It helps in understanding the scale of data handling and is crucial for capacity planning and
resource allocation.

o Data Volume In: It measures the total volume of incoming data, providing an overview of the
workload handled by the system.

o Data Volume Out: Similar to Data Volume In, this metric measures the total volume of data
outputted by the system, which is crucial for understanding the system's throughput.

• Velocity: This metric gauges the speed at which data flows through the components, indicating how
swiftly the system can process and transmit data. It's vital for evaluating the system's capability to handle
real-time data processing and for optimizing throughput.

o Data Points In: This metric tracks the number of individual data points entering the system,
offering insights into the data influx rate.

o Data Points Out: This indicates the number of data points successfully processed and sent out
by the system, reflecting the output efficiency.

• Latency: This measures the time delay in data processing within each component. Minimizing latency is
essential for time-sensitive applications, ensuring that data processing and delivery are accomplished
promptly.

• Resource Usage: This metric encompasses the consumption of computational resources by each data
processing component within the system. It's divided into several key sub-metrics.

o CPU/Memory Usage for Broker, Mapper and Manipulator Add-ons: Monitoring the CPU and
memory usage of specific components like Mapper and Broker add-ons is essential for resource
optimization and ensuring the system's stability and performance.

4.2.3.2 Application Metrics

The second set of metrics is tailored for application developers. These metrics enable developers to monitor and

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 21

optimize the performance of their applications and also provide valuable feedback to AC3 on its operational
performance:

• Application Performance Metrics: Developers can track specific performance indicators related to their
applications, such as response times, error rates, and transaction volumes. These metrics are crucial for
diagnosing and improving application behavior.

• Feedback Metrics: By providing feedback on the platform's performance, developers can aid AC3 in
identifying potential improvements or enhancements, ensuring that the platform evolves to meet the
users' needs effectively.

4.2.4 Data Collection

The principal mechanism for data collection is designed to be compatible with the Prometheus monitoring
solution, a widely recognized tool for gathering and processing operational metrics. For Java-based components,
Micrometer1 is utilized, offering a rich set of functionalities for monitoring application metrics. For Python-based
components, werkzeug2 is employed, a toolkit that facilitates the creation of web applications and includes
capabilities for monitoring and data collection. In addtition to the metrics collected by the data management
module, Section 4.2.2.1 provides a list of network metrics accompanied by descriptive details, which will also be
included in the data collection process.

4.2.5 Data Collection Interfaces for Networking

The Container Proxy (CPX) connects with Prometheus via the Customer Observability Exporter (COE) [1] or
directly [2], as shown in Figure 3 and Figure 4. Grafana can be used in both cases to visualize the NetScaler metrics
exported to Prometheus for easier interpretation and understanding. The diagram in Figure 3 shows a
Prometheus and Grafana integration with NetScaler. COE collects CPX stats like the total hits to a server, HTTP
request rate, ssl encryption-decryption rate, etc. from the the Application Delivery Controller (ADC) instances
and holds them until the Prometheus server pulls the stats and stores them with a timestamp.

Figure 3: ADC metrics exporter or observability exporter (COE)

As already mentioned, NetScaler now supports directly exporting metrics to Prometheus. For example, CPU and
memory usage metrics can be collected to know the NetScaler health. Similarly, metrics like the number of HTTP
requests received per second or the number of active clients to monitor application health can be collected.
NetScaler supports both the Prometheus pull and push mode. In pull mode, an administrator needs to configure
a time series profile that Prometheus queries at regular intervals and pulls the metrics data directly without an
exporter resource in between. With pull mode, read-only access can be enabled for a user without superuser
privileges to export metrics to Prometheus.

1 https://www.baeldung.com/micrometer
2 https://werkzeug.palletsprojects.com/en/3.0.x/

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 22

Figure 4: ADC metrics exporter or observability exporter (COE)

4.3 Network Monitoring

Skupper and Submariner can expose numerous types of network monitoring data related to their respective
functionalities. Skupper provides monitoring capabilities tailored for inter-cluster connectivity with a Kubernetes
environment. Administrators can leverage Prometheus with Skupper to monitor traffic metrics such as latency
and packet loss within clusters. Integration with Prometheus allows for easy data collection and visualization of
monitoring data, it gathers metrics from endpoints exposed by Skupper components, including routers and
proxies. This allows administrators to gain insights into network performance and troubleshoot issues [3].

Figure 5: Skupper architecture

Submariner specializes in facilitating secure communication and connectivity between Kubernetes clusters.
Administrators can monitor the status of inter-cluster connections, tunnel health and endpoint availability
through Prometheus’s integration with Submariner. This enables administrators to collect, analyze, and visualize
monitoring data effectively. Prometheus scrapes metrics endpoints exposed by Submariner components, such
as gateway nodes and controllers, facilitating real-time monitoring of network performance [4].

The current EURECOM's SD-WAN provides overlay monitoring for virtual tunnels established between edge

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 23

devices. Metrics such as latency and packet loss of overlay tunnels are exposed through the controller’s
northbound API.

Figure 6: Illustration of submariner capability

4.3.1 State-of-the-Art on Data Collection Interfaces for Computing

In modern computing environments, the challenge of effectively monitoring diverse and dynamic infrastructures
is significant, especially in AC3, where the goal is to register any resource to the federation. These environments
often consist of a mix of virtual machines, containers, and cloud services, each generating vast amounts of data
that must be managed and analyzed to ensure optimal performance and availability. Traditional monitoring
solutions can struggle with the scalability and flexibility required to handle such heterogeneous and fluid systems
efficiently. An example is Nagios3 or Zabbix4, that are designed around a central server architecture. In such
(monolithic) setups, all monitored data must be sent to a single server that performs data processing and alert
management. This centralization can become a bottleneck as the number of endpoints and the volume of data
increase [5]. For instance, if an organization scales out its infrastructure rapidly, the central server can become
overwhelmed with the sheer volume of incoming data, leading to delayed alerts, slow processing times, and
potential data loss. Additionally, scaling these systems often requires significant manual intervention to add
resources and optimize performance, which can be resource-intensive and error-prone. Another aspect that
should be considered is that many older systems are configured to collect a standard set of metrics with limited
ability to customize or extend what is monitored without significant effort [6]. For instance, tools like HP
OpenView provide a range of metrics and monitoring capabilities, which might not cover all the metrics needed
in a more modern, microservices-based application. Also, it fails to consider performance indicators as well as
constraints/benchmarking evaluations that the resources may have [7].

An approach could be a decentralized system where each component or service independently monitors its
metrics and reports back to a central aggregator. Although this can reduce the load on a single point and improve
resilience, it can also complicate the configuration and maintenance of the overall system. Another approach is
to employ a push-based model, where data is sent to the monitoring system in real-time. While this approach

3 https://www.nagios.org/
4 https://www.zabbix.com/

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 24

provides immediate data availability, it can overwhelm the monitoring system during peak times with high data
inflow. Given the diversity of resource types and the unpredictable nature of their interconnections, the
performance of a monitoring infrastructure can vary greatly. In such a landscape, Prometheus emerges as an
excellent solution that leverages the strengths of different monitoring approaches while addressing their
limitations. Prometheus utilizes a pull-based model to actively gather metrics from pre-configured endpoints at
set intervals. This approach ensures that data collection remains manageable and current, while also minimizing
the risk of data overload that is often associated with push-based systems. Furthermore, Prometheus is designed
for high scalability, featuring robust service discovery that automatically adapts to changes within the
environment, such as when endpoints are added or removed. Additionally, its storage system is adept at handling
large volumes of time series data, which is particularly critical for complex use cases like those of AC3. Moreover,
the Prometheus Query Language (PromQL) offers extensive capabilities for efficient data processing and
aggregation, enhancing the monitoring system's overall functionality and responsiveness.

4.3.1.1 Data Model using Computing Resources

The data model and the corresponding monitoring setup provide a robust foundation for maintaining insight into
the performance and health of a cluster, ensuring that the usage of computing resources is optimized, and issues
can be proactively addressed even in scenarios where the infrastructure has edge or far edge nodes.

In AC3 the objective is not only to develop a generic model, but it is also important to create an effective one for
monitoring the infrastructure. This process should begin with a clear understanding of what is needed to be
monitored in order to ensure the health, performance, and efficiency of a cluster. Monitoring objectives fall into
the following broad categories:

• Resource Usage: Tracking the consumption of CPU, memory, storage, and network resources is
fundamental. These metrics help ensure that the cluster operates within its capacity and can forecast
through the AC3 components when additional resources might be needed.

• Performance Metrics: Measuring response times, throughput, error rates, and other performance
indicators is essential to ensure that applications running on Kubernetes meet their SLA and provide
a good user experience.

• Health and Availability: Regular checks on the health of pods, services, and nodes help in identifying
problems early. This includes monitoring the status of pods (e.g., running, waiting, or crashed) and
nodes (e.g., ready, disk pressure, memory pressure), as well as the success rates of liveness and
readiness probes.

• Cluster State and Scalability: Understanding the state of the cluster involves monitoring the status
and number of nodes, the distribution and health of workloads, and the effectiveness of scaling
mechanisms. It also includes tracking the deployment statuses to ensure that the desired state
matches the actual state, which is critical for deployments and stateful sets.

• System Events and Logs: Collecting and analyzing logs and events can provide deeper insights into
what is happening within the cluster. This includes understanding pod scheduling decisions, system
errors, and significant state changes.

Another layer of abstraction is the identification of key metrics critical for monitoring and managing clusters
effectively. These metrics, essential for understanding both the current state and historical trends of cluster
resources (important input for the AI-based LCM), are categorized into four groups: Pod Metrics, Node Metrics,
Deployment and Stateful Set Metrics, and Resource Usage Metrics. Each category serves a unique purpose,
providing insights that help in proactive management and optimization of the cluster.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 25

The first characteristic is the Pod Metrics that are crucial for tracking the operational status and environment of
the smallest deployable units in Kubernetes. Metrics such as kube_pod_info provide valuable metadata,
including namespace and pod-specific labels, which are instrumental for contextual analysis across the cluster.
The kube_pod_status_phase metric indicates the lifecycle phase of each pod (Pending, Running, Succeeded,
Failed, Unknown), offering immediate visibility into potential disruptions or inefficiencies. Resource allocation
metrics, kube_pod_container_resource_requests_cpu_cores and
kube_pod_container_resource_limits_memory_bytes, detail the CPU and memory specifications requested and
limited per container, aiding in resource management and capacity planning.

Other key characteristic is the Node Metrics that give a broader perspective on the physical or virtual machines
hosting the pods. kube_node_status_allocatable reveals the resources that are available for pod allocation,
crucial for understanding resource availability and constraints. kube_node_status_capacity compares these
figures against the total resources of a node, highlighting the consumption by system processes and the overall
resource capacity. Final characteristic in this category is the kube_node_status_condition that provides real-time
status conditions of nodes such as readiness and any existing issues, which is vital for maintaining the health and
reliability of the cluster infrastructure.

The third group is the Deployment and Stateful Set Metrics, where the kube_deployment_status_replicas and
the kube_statefulset_replicas can be used where these metrics focus on the management and scaling aspects of
applications. These metrics track the number of replicas deployed against the desired count, ensuring that the
application scales correctly in response to demand and maintains resilience through adequate replication.

Lastly, Resource Usage Metrics examine specifics of resource consumption at the container level, facilitated by
cAdvisor integration with Prometheus. Metrics that are being monitored are
container_cpu_usage_seconds_total and container_memory_usage_bytes that provide granular insights into
the resource usage of individual containers. This data is invaluable for troubleshooting, optimizing resource
utilization, and enforcing resource usage policies to prevent overutilization or underutilization.

4.3.1.2 Data Model with Information on the Energy Type

For energy type metrics, Kepler Exporter5 can be used. Kepler which stands for Kubernetes-based Efficient Power
Level Exporter is designed to monitor and improve the energy efficiency of Kubernetes clusters. It allows us to
collect and import energy consumption metrics. It exposes statistics from an application running in a Kubernetes
cluster in a Prometheus-friendly format that can be scraped by any database that understands this format.

Kepler exports several metrics to Prometheus, which are categorized by the type of energy consumed:

• CPU Energy: kepler_container_core_joules_total tracks the energy used by the CPU cores. This measures
the total energy consumption on CPU cores that a certain container has used.

• DRAM Energy: kepler_container_dram_joules_total records the energy consumed by the DRAM.

Information obtained from Kepler’s exporter can be used for profiling the resources with the Resource Profile
Schema described in Section 4.2.2.1. For example, we need to convert the Joule-based metrics from Kepler (such
as kepler_container_core_joules_total) into watts using Prometheus queries. We can also use the rate() function
to calculate energy consumption per second (watts).

4.4 Resource Discovery, Unified Resource Discovery Communication

In today’s highly distributed network environments, efficient management of resources across the CECC is
imperative. The AC3 project should address this need through innovative and sophisticated resource discovery

5 https://sustainable-computing.io

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 26

mechanisms and unified resource communication strategies. These mechanisms are integral to optimizing
resource allocation, enhancing system responsiveness, and ensuring robustness across diverse infrastructures,
including cloud, edge, and far edge layers.

Resource Broker module should comply with the Resource Profile Schema discribed in Section 4.2.2.1. In order
to achive this, Resource Broker will provide to AI-based LCM module a JSON schema with the same format. The
major challenge is to unify all data provided from resource discovery of different computing entities such as cloud
providers or custom provisioned data centers. To address this challenge a simple yet highly effective solution
would be to employ Kubernetes as the base building block where application will be deployed.

4.4.1 Resource Discovery

Having made the previous assumption about employing Kubernetes for applications to be deployed, state-of-
the-art tools can be used that have the added benefit of being production tested.

Every time a new LMS is being provisioned, it will communicate its existence and the initial available resources
to the Resource Discovery mechanism through an API call, also providing information on the real-time Resource
Exposure endpoint.

Resource Discovery module will communicate with the Resource Exposure of each LMS site, Kurbernetes
clusters, in order to get information about the available resources. Each LMS’s Resource Exposure should have a
Kubernetes Metrics server, which will be the Resource Exposure endpoint. There are several metrics that can be
monitored through the Metrics server, such as:

• Cluster state metrics: These metrics focus on the health and availability of Kubernetes items (nodes,
pods, etc.)

• Resource metrics: These metrics allow you to understand whether the cluster can handle its workloads
and whether it can handle new loads. It is possible to track the use of resources at different levels of the
cluster. This group includes the following metrics: memory requests, memory limits, allocatable memory,
memory utilization, CPU requests, CPU limits, allocatable CPU, CPU utilization, and disk utilization.

Resource Discovery will scrape all the available Resource Exposure endpoints of all LMS instances in order and
then will communicate this information to the Resource Broker for transforming the data to the JSON format
that was described previously in Section 4.2.2.1.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 27

5 AI/ML Models for Prediction and Resource Management
5.1 State-of-the-Art

The integration of ML and DL into resource management has significantly transformed cloud and edge
computing. These advancements are highlighted through a comprehensive analysis of research contributions,
including studies on ML-centric resource management in cloud computing and the innovative applications of DRL
in network resource optimization. In the domain of cloud computing, the shift towards ML-based dynamic
resource management methods is primarily aimed at accommodating the variability and complexity of cloud
workloads. In [8], the authors show the importance of developing advanced ML models to improve the accuracy
of workload predictions, optimize the utilization of resources in virtual machines (VMs), and realize energy-
efficient data center operations. The future of cloud computing resource management, as suggested by [8], lies
in the creation of sophisticated ML models and adaptive management strategies that can accurately predict and
efficiently allocate resources. The adoption of ML and DL offers promising solutions by enabling intelligent
prediction, adaptation, and optimization of network operations. This includes resource allocation, power
distribution, and traffic management, automating decision-making processes to ensure more efficient, reliable,
and energy-saving cloud and edge computing. The emergence of DRL as a powerful tool in resource management
shows its ability to dynamically adjust and optimize resource allocation based on changing conditions and
demands. Authors in [9] give an example of the application of DRL in managing system and network resources
by translating complex allocation tasks into a learning problem. This approach not only matches the performance
of state-of-the-art methods but also intuitively learns effective strategies through direct experience, marking a
paradigm shift towards more flexible and efficient resource management methods. However, despite these
advancements, several challenges remain, including the need for explainability of DRL models, scalability,
decision-making complexity, and adaptability to different network environments. Addressing these challenges
requires further research focused on developing sophisticated ML models that can provide accurate predictions,
consider a wider range of resources, and implement adaptive management strategies. The application of ML and
DRL in resource management represents a significant step towards more adaptive and intelligent systems
capable of handling the complexities of modern computing environments. By enhancing the efficiency,
adaptability, and performance of cloud and edge computing, ML-centric approaches are paving the way for the
next generation of computing networks and systems. As the field continues to evolve, the development and
integration of advanced ML models and solutions promise to unlock new levels of efficiency and innovation.

5.2 Data, Computing and Networking Metrics

In the context of managing resources within the CECCM system, AI and ML models will try to ensure efficient
resource utilization. To achieve this, we rely on a comprehensive set of Key Performance Indicators (KPIs) that
provide insights into various aspects of system performance, reliability, and security. Table 2 outlines the KPIs
used in our AI/ML models for resource management, explaining their significance and how they contribute to
the overall optimization process.

Each KPI serves a specific purpose, enabling us to build sophisticated AI/ML models that predict future resource
requirements, identify potential bottlenecks, and optimize resource allocation dynamically. By continuously
monitoring these metrics, our models can proactively adjust resource distribution, ensuring that applications run
smoothly and efficiently even under varying load conditions. This proactive approach not only enhances user
experience by minimizing latency and downtime but also optimizes the use of underlying infrastructure, reducing
operational costs and improving overall system sustainability.

Table 2 provides a list of the actual counters that can be used per category.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 28

Table 2: List of the actual counters

Counter Categories

Response Time response_time

response_time_avg

response_time_max

response_time_min

Error Rate error_rate

error_count

error_ratio

errors_per_second

Transaction Throughput

transaction_throughput

transactions_per_second

transactions_rate

Connection Persistence connection_persistence

persistent_connections

connection_persistence_rate

Transaction Continuity transaction_continuity

transaction_count

transactions_per_second

transaction_success_rate

HTTP Requests http_request_total

http_request_rate

HTTP Response http_response_time

http_response_code_2xx_count

http_response_code_3xx_count

http_response_code_4xx_count

http_response_code_5xx_count

SSL Connections ssl_connections

ssl_total_connections

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 29

ssl_current_connections

SSL Handshake Time ssl_handshake_time

ssl_handshake_duration

ssl_handshake_latency

Database Query Times db_query_time

db_query_response_time

db_query_duration

Cache Hit Rates cache_hit_rate

cache_hit_ratio

cache_hits

cache_misses

Throughput throughput

total_throughput

network_throughput

data_throughput

Network Latency network_latency

latency_avg

latency_max

latency_min

Security Metrics security_events_total

security_events_rate

security_violations

security_threats_detected

security_attacks_prevented

Load Balancer Metrics load_balancer_throughput

load_balancer_errors

load_balancer_response_time

load_balancer_server_health

load_balancer_rule_hits

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 30

5.3 AI/ML to Predict Infrastructure Usage

5.3.1 State-of-the-Art

Infrastructure usage in the CECC refers to the utilization of various computing resources at the edge or cloud
level. These resources can range from compute resources to storage resources to network resources. Most
existing work in predicting infrastructure usage focuses on computing resources. Predicting infrastructure usage,
particularly computing resources, has typically followed two directions. The first direction involves predicting the
workload and then inferring the cloud computing resource usage, such as the CPU or memory, while the second
direction involves considering the cloud computing user pattern to predict computing resource usage directly.
Several approaches to workload prediction in the context of cloud resources have been explored. Some of these
approaches employ classical time series forecasting mechanisms such as autoregressive integrated moving
average (ARIMA) [10]. However, these approaches have shown limited learning capability compared to more
advanced ML models.

ML models have been extensively utilized for workload prediction in the context of the cloud, as demonstrated
in [11], where the authors trained a regression model to forecast the resources (number of VMs) required to
meet a specific response time, SLO, for the predicted workload. They specifically evaluated various state-of-the-
art regression methods, including Elastic Net (EN), Linear Regression (LR), Polynomial Regression (PR), and
Decision Tree (DT), to predict the workload. In [12], a workload prediction approach is developed using Support
Vector Regression (SVR) and web server workload data to evaluate the required resources. Their ultimate goal
was to minimize latency while reducing infrastructure costs and energy consumption. Another approach, called
CloudInsight, is developed in [13], where the objective is to create a cloud workload prediction framework
leveraging multiple workload predictors to create an ensemble model to improve the accuracy of the predicted
cloud workload. The specificity of the ensemble model is that it is periodically optimized to address sudden
changes in workload. Similarly, [14] developed a workload prediction mechanism based on ensemble methods,
demonstrating the superior performance of their approach compared to K Nearest Neighbor (KNN), Neural
Network (NN), DT, Support Vector Machine (SVM), and Naïve Bayes (NB).

A more granular approach to predicting cloud resource usage with ML is addressed in [15], where the prediction
is tailored to the task and resource. Along the same vein of granularity, [16] presents a prediction model that
provides short- and long-term cloud resource usage predictions, enabling the proposed solution to adapt to
different load characteristics and temporary and permanent usage changes. In [17], a VM consolidation approach
is proposed that takes into account both current and future resource utilization. Their approach uses a
regression-based model to approximate the future CPU and memory utilization of virtual machines (VMs) and
physical machines (PMs). They investigate the effectiveness of virtual and physical resource utilization prediction
in VM consolidation performance using Google cluster and PlanetLab real workload traces. Their experimental
results show improvements over other heuristic and meta-heuristic algorithms in reducing energy consumption,
the number of VM migrations, and the number of SLA violations.

In addition to traditional ML methods, DL techniques, particularly those using Long Short-Term Memory (LSTM),
have been explored for predicting cloud resource usage. For instance, [18] investigates a model selection
approach that captures common resource usage patterns across different tasks within a job. They employ a set
of LSTM models trained at the job level, allowing them to select the appropriate model during inference for
predicting resource usage accurately. In a thought-provoking study, [19] questions the necessity of complex
machine learning models for cloud resource prediction. They find that LSTM models achieve high prediction
accuracy even on unseen data. However, upon closer examination, they notice that the predicted values closely
resemble the original data shifted by one-time step into the future. Other studies, such as ([20], [21], [22], [23],
[24], [25]), have also explored various DL approaches for cloud resource prediction. These include methods based

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 31

on LSTM, Bidirectional LSTM (Bi-LSTM), Gated Recurrent Unit (GRU), and Convolutional Neural Networks (CNN).
These efforts aim to improve the accuracy and efficiency of cloud resource management and optimization.
In recent years, advancements in DL, particularly the transformer architecture [26], have facilitated the
development of sophisticated techniques for workload and resource usage prediction. In [27], the authors
propose a workload prediction approach that decomposes time series data into trend items, period items, and
residuals. They employ quantile regression and exponential smoothing for prediction and additionally explore
transformer-based prediction models in situations with ample data. Similarly, [28] introduces a deep attentive
periodic model based on the transformer for multi-dimensional, multi-horizon workload prediction. This model
delivers precise and reliable workload information crucial for scaling operations. Notably, their approach features
a lightweight periodicity extractor capturing inherent workload seasonality and a periodicity attention module
learning periodic workload dependencies. In [29], the authors develop an elaborate workload prediction model
predicting the workload associated with each microservice using a spatio-temporal GNN. They employ various
approaches for temporal time series data prediction and highlight the advantages of the transformer over
methods like DT Regressor, SVM, and LR. Despite the efficacy of these methods, it is worth noting that they lack
explainability in their predictions.

5.3.1.1 Beyond State-of-the-Art

The existing approaches for infrastructure usage prediction are either based on classical time series forecasting
approaches, ML or DL methods. They also consider the recent advances in DL, such as the transformer, to predict
infrastructure usage. However, they do not consider XAI models for infrastructure usage prediction. The
application of XAI approaches to time series data has attracted an important consideration [30].

5.3.2 XAI-Enabled Fine Granular Resources Autoscaler

In this section, we describe a Zero-touch Service Management (ZSM) framework featuring a fine-granular
resource scaler algorithm to run microservices in a cloud-native environment optimally, proposed in [31]. The
scaler algorithm relies on ML models to predict the performances of the run microservice. When a service
degradation is detected, XAI algorithms are used to interpret the ML prediction and deduce which features led
to that bad performance. More specifically, the framework relies first on an ML algorithm based on eXtreme
Gradient Boosting (XGBoost) [32] to predict any violations related to the performance of running applications.
The characterization of the application performance is done using the application response time metric. The
trained ML model considers many features related to CPU and memory, namely CPU usage, CPU limit, memory
usage, and memory limit. Parallelly, an XAI algorithm is run, namely SHAP [33], to deduce the most important
features that yield such violations using ML outputs. By knowing the root cause of the performance violation,
the autoscaler algorithm scales the CPU, memory, or both. Regarding the scale-down process, we consider a
threshold-based approach for CPU and memory, in which a scale-down is possible. But, in order to avoid a ping-
pong effect (repetitive scale down and scale up), we also consider a stabilization period after a scale-up where a
scale-down process is not allowed.

The vertical autoscaling framework can be combined with existing horizontal scaling mechanisms in order to
achieve both vertical and horizontal resource autoscaling.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 32

5.3.2.1 Design and Specification of the Autoscaler Framework

Figure 7: Zero-touch service management framework architecture

Figure 7 illustrates a generic architecture of the proposed ZSM framework. We assume that all microservices run
in a cloud-native environment. The figure separates between the closed-control loop components described in
the preceding paragraph and the virtualized infrastructure and its manager. The latter is known as the assisted
system based on ETSI Experiential Networked Intelligence (ENI) group's notation [34]. According to ETSI cloud-
native report [35], the cloud-native equivalent of a hypervisor is Container Infrastructure Service (CIS), which
provides all the runtime infrastructural dependencies for one or more container virtualization technologies. In
contrast, Container Infrastructure Service Management (CISM) is a cloud-native equivalent of Virtualized
Infrastructure Manager (VIM). Technologically speaking, CSIM may correspond to Kubernetes. Regarding the
closed-control loop, the Monitoring System (MS) monitors the KPI from CIS regarding the container's resource
usage, such as CPU and memory consumption. In our case, we extracted information regarding computing
resource consumption (CPU, memory) that the Analytics Engine (AE) will use to predict the performance of the
microservice at the service level. Here, we are interested in predicting QoS as perceived by the end-users. In the
context of a web server, the metric reflecting the QoS can be the response time, i.e., the time a web server takes
to answer a client request. Usually, high service time means the server is overloaded and cannot handle the
requests in a bounded time, hence degrading the user's quality of experience. AE runs the trained ML model
along with the XAI algorithm to predict whether the response time corresponds to service degradation. The XAI
module uses both the collected KPI as well as the ML prediction to provide an explanation. Both the explanation
and the prediction are transmitted to the Decision Engine (DE) and, more precisely, to the Diagnostic Engine
module (Figure 7). The latter uses the output of the AI model responsible for detecting whether the application
response time is appropriate or not. It also receives explanations from the XAI module about inference. The
explanation gives the contribution of the features to the model output, which means that if the model detects a
high response time occurrence (i.e., QoS degradation), the XAI output indicates the contribution of the
application's resource features in this result. These characteristics are related to either CPU usage or memory
usage. The Diagnostic Engine then detects the element that caused the high response time. This information is
then passed to the vertical autoscaler algorithm, which decides on which resource to scale, hence performing a
fine-granular scaling rather than blindly scaling both CPU and memory. It is worth noting that the autoscaler
decision is enforced using the northbound API exposed by CISM that allows updating the resources dedicated to
the container running the application by modifying the application's controller object of Kubernetes. Afterward,

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 33

the Kubernetes controller will roll out a new instance with the new resources definition and delete the old
instance.

Regarding the scaling down process, we use a stabilization period after a scale-up in which scaling down will not
be performed in order to avoid resource scaling oscillations, i.e., the autoscaler performs one action and, after a
short period, performs the opposite action. If no performance drop has been detected during the last few
seconds of the stabilization period, a scaling down is possible. To perform this operation, we rely on historical
data on resource usage. For memory, if during the last stabilization period, the maximum memory usage was
under a chosen percentage, then a scaling down of memory resources is possible. For CPU, if the mean CPU
usage during the last stabilization period was less than a certain percentage, then a scale down of CPU resources
can be performed. It is worth noting that the scaling down process has no impact on the granularity of the
resource allocation. Indeed, when scaling down an application, the resources are released and can be used by
another running application instance.

5.3.2.1.1 Analytical Engine (AE)

The analytical engine is responsible for analyzing the microservices' performance and detecting QoS degradation.
It is composed of two main components: (1) the AI model, which is based on XGBoost, to predict the latency
performance of a microservice. (2) The XAI model interprets the output of the AI model using SHAP.

ML Training

Considering the collected dataset, we can observe that the resources allocated to the application and the relative
usage of resources are related to the performance of the application. First, the allocated resources show the
limit of performance; the application with fewer available resources will perform worse. Second, the relative
resource utilization indicates the possibility of the occurrence of high response times, which means that the
degradation of the application performance is more likely to occur when the resource utilization approaches the
limit allocated to the application. Therefore, we implement an ML model using the XGBoost classifier to detect
performance deteriorations of the application. The model uses resource usage and limits information that can
be collected on the running applications via MS. XGBoost is a scalable ML system for tree boosting. It implements
the gradient-boosted trees algorithm, a supervised learning algorithm that can be used for regression or
classification tasks. We train the XGBoost classifier to detect the application's performance drop based on
resource usage patterns. To train the XGBoost classifier on the web server's dataset, we label the dataset's lines
as QoS respected or QoS not respected when the response time is lower or higher than a threshold, respectively.
Finally, the model gets the following information as input: memory limit, memory usage, CPU limit, CPU usage,
relative CPU, and relative memory. Those metrics can be collected for all the running workloads via MS during
runtime. Based on the label and the resource usage, the model classifies the performance of the application,
using the resource consumption of the workload, into respecting QoS or not based on the resource usage and
limit. During training, we compared several classification algorithms: K-Nearest Neighbors (KNN) classifier,
Artificial Neural Network (ANN) classifier, Logistic Regression (LR), Random Forests (RF), and XGBoost classifier.
The XGBoost model was selected based on the classification report by comparing the precision and recall for
class 0, which represents the performance degradation of the service. The model's accuracy was 0.95, and the
precision and recall for both classes (0 for Qos not respected and 1 for QoS respected) were respectively 0.86,
0.74 for class 0, and 0.97, 0.99 for class 1.

XAI

The second element of the AE is the XAI module, which is responsible for interpreting the output of the AI model.
Several XAI techniques exist and can be classified into global or local explanation techniques. Global explanation
techniques, such as SHAP, are applied to obtain the general behavior of a model by attempting to explain the
whole logic of a model by inspecting its structure. On the other hand, local explanation techniques, such as SHAP

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 34

and LIME [36], tackle explainability by segmenting the solution space and giving explanations to less complex
solution subspaces that are relevant to the whole model. These explanations can be formed through techniques
with the differentiating property that only explain part of the whole system’s functioning. The XAI module of the
AE relies on the local explanation method based on SHAP to compute the scores of the features contributing to
the model's output. The module's output is the contribution score values of the features to the output. Figure 8
represents a visualization of an output of the SHAP method for an ML prediction. The negative values indicate
that the feature pushes the model's output towards the output 0. while the positive values signify that the
feature pushes the output of the model towards the positive output 1.

Figure 8: Shapley values provided by the SHAP method

For this inference, the XAI module reports the following Shapley values or scores of the features, ordered by
decreasing contribution to the model output: “CPU_percentage” -2.56, meaning that the “CPU_percentage”
value pushed the model towards the output 0 (SLA not respected) with a score of 2.56, the second affecting
feature is “RAM_limit” with a score of -1.81, the next contributing feature is “RAM_usage” with a score of +0.99
meaning that this feature pushed the model towards the output 1 (SLA respected) with a score of 0.99; for the
less impacting features, the XAI module indicates “CPU_usage” +0.71, “RAM_percentage” -0.38, and
“CPU_limit” -0.13.

Afterward, the selection of the resources to scale up is made at the DE level. This is done by comparing the
weighted sum of the contribution of the features related to CPU resources with the weighted sum of the
contribution of resources related to memory resources. We can deduce from the previous scores that the
combined score of CPU-related features is -1.98 and memory -1.2, meaning that CPU-related features have more
influence on the model decision. Therefore, the DE decides that the cause of the performance drop is insufficient
CPU allocation. This information allows the vertical autoscaler to decide to allocate more CPU resources to the
workload.

5.3.2.2 Performance Evaluation

For the performance evaluation, we use two versions of the vertical autoscaler, an XAI-based autoscaler to scale
the web server instances resources vertically and one without using the XAI output. The running application is
exposed to requests load produced by a test component that uses ApacheBench6 to make several concurrent

6 https://httpd.apache.org/

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 35

HTTP requests. We refer to a test round as a set of N requests made by C concurrent clients. It is worth recalling
that AE runs the ML model to predict QoS degradation. The latter was trained in the dataset related to the
performance of web servers under changing configurations. If the model detects degradation, the XAI module is
called. The XAI takes as input both the ML output as well as the dataset to return the Shapley (or score) values
of the features as a numerical score. Then, the Diagnostic Engine of DE compares the weighted sum of the
memory-related features scores with the weighted sum of the CPU-related features scores. This output will allow
the autoscaler to decide what type of resources need to be scaled. In case the XAI module is not involved, the
autoscaler obtains information about the service's state using only the ML module's output (XGBoost); it has no
information about the contribution of the features to the model output. If degradation is detected, both CPU
and memory resources are scaled.

Figure 9: Highest values of CPU and RAM allocated to an instance of the applications in relation to the number of
concurrent clients

We performed an extensive test regarding the performances of the two vertical autoscalers. Hence, we deploy
30 applications, and we vary the load to which each application is exposed. The application is first deployed with
an initial resource configuration of 0.5 Core of CPU and 128MB of memory.

The number of concurrent clients sending requests to each application varies from 10 to 100, while the number
of requests varies from 90 when using 10 concurrent clients to 450 when a concurrency level of 100 is used.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 36

Finally, we perform 100 rounds for each concurrency level. For each application, the pod configuration is
reinitialized afterward. Resulting in a total of 300 application instances to be scaled by each autoscaler (30
services exposed to a load varying from 10 to 100). Figure 9 shows the highest amount of CPU allocated to the
pod running the application for each load and the highest amount of memory allocated to the pod for both
vertical autoscalers. Whereas Figure 10 illustrates the mean response time of the 30 applications for the 100
rounds of requests that each scaled application receives. During the experimentation, the 300 instances that
have been scaled using the XAI-based autoscaler employed a total of 184.25 cores of CPU and 29.312 GB of
memory, while the 300 instances that have been scaled using the non-XAI-based autoscaler used a total of 188
core of CPU and 48.128 GB of memory. Thus, the percentage of memory gained is 39%, while the percentage of
CPU resources gained is 1%.

By comparing the decisions of the two vertical autoscalers we observe that the XAI-based one allocates less
memory to the application for all amounts of load. In contrast, it allocates the same or more CPU than the non-
XAI-based autoscaler. These results clearly show the fine granularity of the resource allocation achieved by the
XAI-based autoscaler, thanks to the ability of the latter to determine the factors that led to performance
degradation. Moreover, from the response time plot, we observe that the mean response time of the
applications while being managed by both vertical autoscalers is approximately equal, meaning that the
allocation of lower resources by the XAI-based autoscaler did not affect the applications' performances.

Figure 10: Mean response time in relation to the number of concurrent clients

5.3.3 XAI for Prediciton of Infrastructure Usage

We develop an XAI method based on the transformer for explainable prediction of the latency and determination
of the influential feartures, characterized by infrastructure resources such as the CPU and memory. For this
purpose, we use the Temporal Fusion Transformer (TFT) [37]. The TFT is an AI model designed for time series
forecasting. It combines the transformer architecture [38] with temporal fusion mechanisms to capture temporal
patterns in sequential data. It is composed of the multi–head attention mechanism from the transformer with
Recurrent Neural Networks (RNNs). The TFT architecture includes an LSTM encoder–decoder and multi–head
attention components, primarily composed of gating mechanisms, variable selection networks, and static
covariate encoding.

5.3.3.1 Gating in TFT

We adopt the TFT architecture presented in Figure 11 for our experiments. Figure 11 illustrates three building
blocks: the variable selection networks, the LSTM encoder-decoder, and the TFT, which combines the GRN with
multi-head attention. These blocks receive inputs, including past features, the target variable, and future known

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 37

features. They produce forecasts of the latency and their associated quantiles. The rationale of utilizing the
latency as our response variable is dictated by the fact that it allows us to have insight into the SLA compliance.
In our case, we predict the latency using resources as features, such as the CPU and memory. Then, thanks to
the explainability of the approach, we can determine which feature(s) is/are the most influential in the
forecasting. With this mechanism, whenever, for example, the predicted latency overtakes a predefined
threshold, we can determine at that instant which feature(s) was/were the most influential. Through this
process, we can implement corrective measures by acting on the responsible feature and preventing the latency
from crossing the threshold, thus being compliant with the SLA. This leads to proactive orchestration of
microservices.

Figure 11: TFT architecture for prediction

The advantage of using TFT comes from the fact that traditional explainability methods for ML and DL
approaches, such as LIME and SHAP, are not well-suited for time series data. For instance, LIME constructs
independent models for each data point, while SHAP considers features independently for neighboring time
steps, disregarding temporal order and critical dependencies between time steps in most situations. This is where
the advantages of TFT lie. The fundamental part of the TFT architecture is the Gated Residual Networks (GRN).
The information flow through the GRN can be represented as follows

𝐺𝑅𝑁(𝑎,  𝑐)  =  𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑎 + 𝐺𝐿𝑈(𝜂1)) (1)

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 38

𝐺𝐿𝑈(𝜂1)  =  𝜎(𝑊1𝜂1 + 𝑏1) ⊙ (𝑊2𝜂1 + 𝑏2) (2)

𝜂1 = 𝑊3𝜂2 + 𝑏3 (3)

𝜂2 = 𝐸𝐿𝑈(𝑊4𝑎 + 𝑊5𝑐 + 𝑏4) (4)

a is the input to the GRN, and c represents the context vector from static covariates. W and b are weights and
biases optimized during the training phase. a and c are passed through a dense layer with Exponential Linear
Unit (ELU) activation function, followed by a linear layer with dropout. The output from this layer is then fed to
the Gated Linear Unit (GLU), where ⊙ denotes the element–wise product and σ is the sigmoid activation
function. The output from the GRN is determined using standard layer normalization of the sum of input a and
the GLU output (residual connection).

5.3.3.2 Variable Selection Networks in TFT

The role of the variable selection networks in the TFT is to determine the relevant inputs in the time series
forecasting process. These networks identify the relevant features that can influence the response variable,
thereby providing interpretable forecasting results. The following equations illustrate how the variable selection
networks operate in general:

𝜉𝑡,𝑣𝑠
𝑗 = 𝐺𝑅𝑁(𝜉𝑡

𝑗) (5)

𝜈𝜒𝑡 = 𝑠𝑜𝑓𝑡 max(𝐺𝑅𝑁(Ξ𝑡 ,  𝑐𝑠)) (6)

𝜉𝑡, 𝑣𝑠 = ∑ 𝜈𝜒𝑡
(𝑗)

𝑚𝑥

𝑗=1

𝜉𝑡,𝑣𝑠
𝑗

(7)

The first step in the variable selection is to linearly transform all variables at time t to 𝑑𝑚𝑜𝑑𝑒𝑙 dimension. The

transformed input for the 𝑗𝑡ℎvariable is represented by 𝜉𝑡
𝑗, where each transformed input is fed to a GRN block,

which considers the non–linearities. The output of these blocks is 𝜉𝑡, 𝑣𝑠
𝑗 . Another GRN block which takes as input

Ξ𝑡, the flattened 𝜉𝑡
𝑗
, and a vector context 𝑐𝑠 coming from static covariates, produces a vector 𝜈𝜒𝑡   ∈  ℝ

⬚

𝑚𝜒 after

passing through a softmax activation function. The variable weights 𝜈𝜒𝑡   ∈  ℝ
⬚

𝑚𝜒 are multiplied with the

corresponding processed inputs to get the final output of the variable selection networks.

5.3.3.3 Static Covariate Encoding in TFT

The TFT incorporates an approach to integrate static variables, which differs from LSTM and the transformer
models. This integration is achieved by generating four context vectors from processed and weighted static
variables, produced by the static variable selection networks. Each context vector is then infused into different
components of the TFT, where they are utilized for processing. Refer to [37] for more details.

5.3.3.4 Interpretable Multi-Head Attention

The self-attention mechanism of the TFT enables it to learn long-term relationships across different time steps.
It is extended in [37] to enhance its explainability capabilities. The attention mechanism is given by

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,  𝐾,  𝑉) = 𝐴(𝑄,  𝐾)𝑉 (8)

Where 𝑉  ∈  ℝ𝑁×𝑑𝑉 are the values, 𝐾  ∈  ℝ𝑁×𝑑𝑎𝑡𝑡𝑛 are the keys, and 𝑄  ∈  ℝ𝑁×𝑑𝑎𝑡𝑡𝑛 are the queries.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 39

A represents a normalization function, where the usual choice is scaled-dot product attention.

𝐴(𝑄,  𝐾) = 𝑠𝑜𝑓𝑡 max (
𝑄𝐾𝑇

√𝑑𝑎𝑡𝑡𝑛

)
(9)

Multi-head attention is usually employed to improve the learning capacities of the standard attention
mechanism

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,  𝐾,  𝑉) = [𝐻1,   ⋯ ,  𝐻𝑚ℎ]𝑊𝐻 (10)

𝐻ℎ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄𝑊𝑄
(ℎ)

,  𝐾𝑊𝐾
(ℎ)

,  𝑉𝑊𝑉
(ℎ)

) (11)

𝑊𝐾
(ℎ)

  ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝐾 , 𝑊𝑄
(ℎ)

  ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑎𝑡𝑡𝑛 , 𝑊𝑉
(ℎ)

  ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑉

are the head-specific weights for keys, queries, and values, and 𝑊𝐻   ∈  ℝ(𝑚𝐻∙𝑑𝑉)×𝑑𝑚𝑜𝑑𝑒𝑙 combines linearily
outputs concatenated from all heads 𝐻ℎ. The interpretable multi-head attention is given by

𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑙𝑒𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,  𝐾,  𝑉)  =  𝐻̃ 𝑊𝐻 (12)

𝐻̃  = 𝐴̃ (𝑄,  𝐾)𝑉 𝑊𝑉 (13)

= {
1

𝐻
  ∑ 𝐴 (𝑄𝑊𝑄

(ℎ)
,  𝐾𝑊𝐾

(ℎ)
)

𝑚𝐻 

 ℎ=1

} 𝑉𝑊𝑉

(14)

=
1

𝐻
  ∑ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄𝑊𝑄

(ℎ)
,  𝐾𝑊𝐾

(ℎ)
,  𝑉𝑊𝑉)

𝑚𝐻 

 ℎ=1

(15)

where 𝑊𝑉   ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑉 are weights of the values shared across all heads and 𝑊𝐻   ∈  ℝ𝑑𝑎𝑡𝑡𝑒𝑛×𝑑𝑚𝑜𝑑𝑒𝑙 is used for
linear mapping.

5.3.3.5 Infrastructure Metrics used and Latency Pattern

We evaluated the TFT explainable approach with real-world data. We specifically focus on the prediction of the
latency, with CPU and memory as the infrastructure resources representing our features. We present the CPU,
memory, and the mean latency in Figure 12. These metrics are collected at a sampling rate of 5 minutes. To
validate our approach, we use different values of the latency, particularly we use different distributions of the
latency values. For example, the latency p75 and p95 are considered. As an example, the latency p95 (95th
percentile) represents the latency value below which 95% of the measured latency values belong to. Compared,
for example, to p99 latency, it is supposed to provide a broader view of the latency distribution. p95 latency is
usually used to understand the performance of a system, but it is usually less impacted by extreme outliers
compared to p99. If the p95 latency for a microservice is 100 milliseconds, it means that 95% of responses are
received in 100 milliseconds or less, but 5% of responses may experience longer latencies. That is one of the
reasons why latency is used for monitoring SLA compliance.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 40

Figure 12: Metrics used

5.3.3.6 Performance evaluation

To build our prediction model for the latency, we utilize features such as the CPU and memory. Our experiments
do not rely on any autoregressive features but only on the actual infrastructure resources to forecast future
latency. For the TFT model, we include a time index that increments by one for each time step. We standardize
each time series separately, ensuring that the values are always positive. To achieve this, we use the
EncoderNormalizer, which dynamically scales each encoder sequence during model training. Our model training
is conducted using PyTorch Lightnin. The distinctive characteristic of the TFT model is its attention mechanism,
which attributes different levels of importance to various points in time during forecasting. This attribute
provides explainability to the forecasted results. The TFT is designed for multi–horizon forecasting, meaning that
it can forecast future values at multiple time horizons simultaneously; here, for illustrations purposes our multi–
horizon is equal to 2. To achieve this, the model incorporates output layers that forecast values for each time
horizon of interest. This allows it to generate forecasts for different future points in the latency data. Additionally,
we tune parameters such as a batch size of 32, a learning rate of 0.03, and 200 epochs. Our model architecture
includes a hidden size of 8, an attention head size of 1, and a dropout rate of 0.1. Furthermore, we set a maximum
prediction length of 96, and a maximum encoder length of 168. To evaluate the performance of our model, we
utilize a quantile loss function. We use early stopping to avoid overfitting and faster convergence.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 41

5.3.3.7 Forecasting Results

We present the results of the forecasting obtained by applying the TFT to the dataset. The dataset comprises a
response variable, latency, and two features, the CPU and memory. Our forecasting horizon is set to 2, resulting
in two figures for each forecasted latency. In these figures, the blue curve represents the actual latency, while
the orange curve depicts the forecasted latency. The grey curve represents the attention values generated in the
Interpretable Multi-head Attention section shown in Figure 11. Additionally, we include the uncertainty
estimates associated with the forecasts.

The variable selection process chooses the relevant CPU, memory, and latency values for each time step. It
accomplishes this task for both the current and past CPU, memory, and latency metrics. To handle past metrics,
an encoder is employed to incorporate the selected features along with an index indicating their relative time.
The role of the encoder is to process historical time series data and capture temporal dependencies. It consists
of multiple layers of self-attention mechanisms and feedforward neural networks, like the encoder in the
transformer model. This encoder encodes infrastructure metrics into a meaningful representation, which then
serves as input to the decoder. Additionally, the decoder takes the CPU and memory features for which latency
forecasting is desired. In TFT, the decoder primarily generates forecasts of latency. Figure 13 presents the results
of the forecasting obtained from the TFT. On the left-hand side, we have the forecasting associated to the 1st
horizon of forecasting and on the right-hand side to the 2nd horizon of forecasting. We observe that the losses in
both forecasting results are relatively low, and they are given by 4.165 for the 1st horizon of forecasting and by
2.605 for the second horizon of forecasting.

Figure 13: Latency prediction results (mean)

Figure 14 presents the explainability associated to Figure 13, where the left-hand side provides the importance
of the features given by the encoder and the right-hand side gives the importance of the features from the
decoder. It is worth mentioning that the encoder corresponds to the training phase and the decoder to the
forecasting phase. In both cases the consensus is that the most influential feature in the forecasting is the CPU.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 42

 Figure 14: Explainability for the predicted latency (mean)

Figure 15 exhibits the latency forecasting provided by the TFT for the latency p75. Similarly to Figure 13, on the
left-hand side we have the forecasting results provided for the 1st horizon of forecasting and on the right-hand
side the forecasting provided for the 2nd horizon of forecast. In both cases, we observe that the loss is relatively
low. It is given by 1.111 for the 1st horizon of forecasting and by 1.116 for the second horizon forecasting. These
two forecasting results demonstrate the accuracy of the TFT.

Figure 16 presents the explainability associated to the forecasting results. On the left-hand side the encoder
provides the importance of the features in the training phase and on the right-hand side the decoder shows the
importance of the features associated to the forecasting. The insight provided by the explainer is that the CPU is
the most influential feature.

Figure 15: Latency prediction results (p75)

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 43

Figure 17 presents the latency forecasting provided by the TFT for the latency p95. Similarly to Figure 15, on the
left-hand side we have the forecasting results provided for the 1st horizon of forecasting and on the right-hand
side the forecasting provided for the 2nd horizon of forecasting. In both cases, we observe that the loss is relatively
high compared to the 2 previous cases. It is given by 19.272 for the 1st horizon and 14.944 for the second horizon.
This is particularly due to the high latency values in this experiment, which is also reflected in the forecasting.

Figure 17: Latency prediction results (p95)

Figure 18 provides the explainability associated to the latency p95. It shows the importance of the CPU feature
for both the encoder and the decoder. This conclusion is in line with the previous experiments using various
latencies.

Figure 16: Explainability for the predicted latency (p75)

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 44

Figure 18: Explainability for the predicted latency (p95)

5.3.3.8 Explainability

One of TFT primary advantages over other DL models is its inherent interpretability, largely attributable to its
variable selection and interpretable multi-head attention mechanisms. With TFT, we can determine the
significance of CPU and memory in latency prediction, a capability present in both the encoder and decoder
components. Across various experiments the consensus is that the CPU emerges as the most influential feature
in latency predictions. Across the figures presenting the explainability, we clearly see the proportion of CPU and
memory in the latency prediction.

The variable selection is pivotal for interpretability as it indicates the importance of CPU and memory at each
time step. By analyzing these influential features, we gain valuable insights into the underlying factors driving
the forecasted latency compliance with SLA. The variable selection weights provide transparency into how the
TFT model processes and weighs the CPU and memory. By associating specific weights with each latency
prediction, we can understand the reasoning behind the decisions of the models and identify the key factors
driving each forecasted latency outcome.

Similarly, multi-head attention is crucial for interpretability as it enables the model to focus on different parts of
the input data and learn complex temporal dependencies. Multi-head attention allows TFT to compute attention
weights for different CPU and memory features at various time steps. With these weights, we can equally
interpret which of the CPU and memory is most relevant for making latency predictions at each time step. This
provides insights into the relative importance of different features and helps us understand how the model
processes and weighs input information when generating latency predictions. Additionally, multi-head attention
enables the TFT to capture both local and global context when making predictions. By attending to different parts
of the input sequence with attention heads, the model can integrate information from nearby and distant time
steps to make more informed predictions. This allows us to interpret how the model incorporates both short-
term and long-term dependencies in the data when generating the latency predictions. This detailed explanation
of latency predictions enhances interpretability, improves analysis of SLA compliance, and provides actionable
insights into the factors contributing to latency forecasts.

5.3.4 GNN for Spatio-Temporal Prediction

5.3.4.1 State-of-the-Art on GNN for Spatio-Temporal Prediction

As cloud and edge computing environments become increasingly dynamic, the integration of GNNs into workload
prediction frameworks presents a transformative approach to managing these complex systems. GNNs, with

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 45

their capability to model intricate relationships and dependencies among data points represented as nodes and
edges in a graph, are particularly suited for the volatile and interconnected nature of cloud-edge environments.
These environments consist of numerous computation nodes where the workload distribution and network
topology can change rapidly due to varying demand and resource availability.

The traditional models for workload forecasting in cloud and edge computing often struggle to adapt quickly to
such changes, potentially leading to inefficiencies in resource allocation and increased operational costs.
However, GNNs can leverage the inherent graph structure of these systems to capture the dynamic interactions
between nodes—namely, the computation units across the cloud, edge, and far edge layers. This enables more
accurate predictions of CPU usage and other critical resources by considering not only the state of individual
nodes but also how they influence each other.

For example, in scenarios where certain nodes become congested, GNNs can help predict the ripple effects on
adjacent nodes, allowing for proactive task offloading and resource reallocation. This is a step beyond static
graph models, like those used in the GraphGRU model [39], which may not capture the temporal dynamics
effectively. By employing models such as DySAT or EvolveGCN, which incorporate temporal changes and evolving
graph topologies, the system can continuously update its predictions to reflect the current state of the network
([40], [41]). This dynamic adaptation ensures that resource prediction is not only real-time but also anticipatory,
minimizing under-utilization and energy waste while enhancing the overall service quality and computational
efficiency across the distributed computing infrastructure. Such capabilities make GNNs a pivotal technology in
the ongoing development of smarter, more efficient cloud and edge computing strategies.

5.3.4.2 Workload Prediction for Volatile Nodes using Dynamic GNN

The primary objective of this study is to predict the future CPU usage of physical nodes within a distributed
system. To achieve this, we leverage historical data on CPU usage from these nodes, as well as the CPU usage of
various microservices that operate on them. These data points are not merely static but part of a dynamic
interplay that unfolds over time across different nodes. To capture this dynamic, we are constructing a temporal
graph that dynamically profiles each microservice.

5.3.4.3 Temporal Graph Construction

Given a set of physical nodes 𝑁 = (𝑛1,  𝑛2,   …  𝑛𝑚) and a set of microservices 𝑀 = (𝑚1,  𝑚2,   …  𝑚𝑘), each
uniquely identified by an ID. Let 𝑈𝑛

𝑡 and 𝑈𝑚,𝑛
𝑡 denote the CPU usage of node 𝑛 and the CPU usage of microservice

instance 𝑚 running on node at time 𝑡 , respectively. Time is discretized into constant intervals, indexed by 𝑡 ,
and 𝑊𝐼𝑁𝐷𝑂𝑊 is the number of time steps into the past included in the feature vector for both nodes and edges.
The complete temporal graph 𝐺 is defined as a series of temporal slices {𝐺𝑡}𝑡=1 

𝑇 , where each 𝐺𝑡 corresponds to
the state of the graph at time 𝑡 . Each 𝐺𝑡 is constructed as follows:

• Each node 𝑛 ∈ 𝑁 is represented as a node in 𝐺𝑡.

• For each microservice 𝑚𝑖 assigned to run on node 𝑛𝑥 at time 𝑡 , an edge is added from node 𝑛𝑦 to 𝑛𝑥 if

𝑚𝑖 was running on 𝑛𝑦 at 𝑡 − 1 . Formally, the edge set 𝐸𝑡 for graph 𝐺𝑡 is defined as:

 𝐸𝑡 = { (𝑛𝑦 , 𝑛𝑥) ∣∣  𝑚𝑖 ∈ 𝑀,  𝑟𝑎𝑛𝑡−1(𝑚𝑖 , 𝑛𝑦), 𝑡𝑜 𝑛𝑥𝑎𝑡 𝑡 }

where ran𝑡−1(𝑚, 𝑛) denotes that microservice 𝑚 was running on node 𝑛 at 𝑡 − 1 .
Node and edge features at time step 𝑡 are defined as:

• Node Features: For each node 𝑛 at time 𝑡, the feature vector includes the CPU usage of the physical

node 𝑛 for the last 𝑊𝐼𝑁𝐷𝑂𝑊 timesteps: {𝑈𝑛  
𝑡−𝑖}

𝑖=0

𝑊𝐼𝑁𝐷𝑂𝑊−1
.

• Edge Features: For each edge (𝑛𝑦 , 𝑛𝑥) representing the assignment of microservice 𝑚 from 𝑛𝑦 to 𝑛𝑥,

the feature vector includes the CPU usage trace of the microservice instance 𝑚 for the last 𝑊𝐼𝑁𝐷𝑂𝑊

timesteps while it was running on 𝑛𝑦: {𝑈𝑚,𝑛𝑦
𝑡−𝑖 }

𝑖=0

𝑊𝐼𝑁𝐷𝑂𝑊−1
.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 46

5.3.4.4 Model Architecture

Figure 19: Model architecture

The GTMixer model is designed to leverage the temporal graph structure 𝐺𝑡 using GNN principles. The model
architecture (Figure 19) is composed of N Graph Temporal Convolution (GTConv) layers followed by a projection
layer that outputs the predicted features as seen in Figure 20 below.

Aggregation Layer

Each GTConv layer operates on nodes 𝑢 by aggregating spatial information from neighboring nodes 𝑣 connected
through edges 𝑒𝑢𝑣. To perform this aggregation, a Single Head Attention mechanism is used as the first step. This
mechanism dynamically weighs the influence of each neighbor 𝑣 based on the edge attributes 𝑒𝑢𝑣 and the
destination node features. The weighted features are then aggregated with a permutation invariant function
such as max, mean, or sum, denoted with ⨁. This process is represented mathematically as:

ℎ𝑢 = ⨁ 𝑆𝑖𝑛𝑔𝑙𝑒𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑥𝑢 , 𝑒𝑣𝑢)

𝑣∈𝑁𝑢

(16)

After aggregation, the spatial representation, which encapsulates the CPU consumption profiles from incoming
microservices, is concatenated with the transformed representation of the source node. This node
transformation is applied through a sequence that includes a linear layer, a ReLU activation, and dropout, with a
residual connection to enhance the learning of subtle variations in the node features:

𝑥𝑢
′ = 𝑥𝑢 + ReLU(Linear(𝑥𝑢)) (17)

Figure 20: Aggregation layer

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 47

The concatenated vector is then passed through a series of MixerLayers, as described in the TSMixer architecture,
which mixes features across both the node and its neighborhood to capture temporal dependencies effectively:

ℎ′_𝑢 = "{𝑀𝑖𝑥𝑒𝑟𝐿𝑎𝑦𝑒𝑟}(𝑥′_𝑢||ℎ_𝑛) (18)

The Mixer Layer depicted in Figure 21 is made up of two modules: 𝑀𝐿𝑃𝑡𝑖𝑚𝑒 and 𝑀𝐿𝑃𝑓𝑒𝑎𝑡 . 𝑀𝐿𝑃𝑡𝑖𝑚𝑒 is like the

source node transformation but with an additional normalization layer at the beginning. The 𝑀𝐿𝑃𝑓𝑒𝑎𝑡 module

combines the source node features with the aggregated representation of the incoming microservices resource
usage. It has a normalization layer, followed by two linear layers, ReLU activation, and dropout. This layered
approach ensures that each node’s feature vector represents its attributes and integrates information from its
immediate graph neighborhood over time.

Figure 21: Mixer Layer

Temporal Projection

Finally, the output from the last GTConv layer is processed through a projection layer, which linearly transforms
the high-dimensional feature vector to the desired output dimension, facilitating direct prediction of the CPU
usage for each node. This model architecture aligns with the temporal graph 𝐺𝑡 by explicitly considering both
the static and dynamic aspects of nodes and edges, thereby enabling predictions that are deeply contextualized
by the historical data embedded in the graph.

5.3.4.5 Performance Evaluation

5.3.4.5.1 Dataset

We analyzed a trace dataset from an Alibaba cluster, which included detailed runtime metrics of nearly 20,000
microservices. This dataset was collected from over 10,000 bare-metal nodes, documenting separate traces of
CPU and memory usage over a 12-hour period in 2021. Upon analysis, we observed low variability in RAM usage
across nodes, prompting us to exclude it from further experimental considerations.

To construct the temporal graph for our analysis, we utilized the node table, which included information on the
CPU and RAM usage of physical nodes, and the MSResource table, which documented CPU and RAM usage traces
of instances. Each instance was assigned a unique ID, a microservice ID, and the node ID of the physical node it
was running on. In cases where a machine hosted multiple instances of the same microservice, we computed the
mean CPU and RAM usage to establish the edge signals in the temporal graph. In each time step of our simulation,
we randomly selected a percentage of nodes and erased their historical CPU utilization data to mimic the
volatility inherent in edge environments. For these same nodes, we then recalculated the CPU utilization, 𝑈𝑛

𝑡 , by
considering only the microservices incoming from the previous time step. This approach effectively simulates a
scenario in which new nodes emerge and are assigned a subset of microservices to execute. For all experiments,

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 48

we consistently selected the same 300 nodes to ensure a fair comparison. We integrated the temporal
information into our prediction model by defining a 𝑊𝐼𝑁𝐷𝑂𝑊 of 10 timesteps and a 𝐻𝑂𝑅𝐼𝑍𝑂𝑁 of 3 timesteps
for the prediction algorithm. To evaluate GraphGRU we constructed the static relationships between nodes using
the Dynamic Time Warping (DTW) algorithm.

5.3.4.5.2 Evaluation Metrics

To evaluate the performance of models predicting CPU usage in the context of the temporal graph 𝐺𝑡, we use
both standard and dynamic evaluation metrics. Standard metrics include Mean Squared Error (MSE), Mean
Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). The dynamic versions—Dynamic MSE
(DMSE), Dynamic MAE (DMAE), and Dynamic MAPE (DMAPE)—specifically measure prediction errors for nodes
that dynamically appear with no previous history.

 Standard Metrics

MSE =
1

𝑛
∑ (𝑈𝑛

𝑡𝑖 − 𝑈𝑛
𝑡𝑖̂)

2
𝑛

𝑖=1

(19)

MAE =
1

𝑛
∑ |𝑈𝑛

𝑡𝑖 − 𝑈𝑛
𝑡𝑖̂|

𝑛

𝑖=1

(20)

MAPE =
100%

𝑛
∑ |

𝑈𝑛
𝑡𝑖 − 𝑈𝑛

𝑡𝑖̂

𝑈𝑛
𝑡𝑖

|

𝑛

𝑖=1

(21)

Dynamic Metrics

Dynamic versions of the metrics (DMSE, DMAE, DMAPE) follow the same formulas as their standard counterparts
but are computed over 𝑛dynamic, the number of observations for nodes that appeared dynamically without prior

history.

5.3.4.5.3 Performance Evaluaiton

The results of our study are encapsulated in Table 3 which provides a comprehensive view of how each model
performed across both standard and dynamic metrics. When comparing GTMixer with GraphGRU, the former
achieved a substantial improvement, especially in standard metrics like MSE, MAE, and MAPE. These
improvements are even more pronounced when considering dynamic metrics (DMSE, DMAE, DMAPE),
demonstrating GTMixer's superior capability to adapt to nodes with no historical data.

Table 3: Results

Model MSE MAE MAPE DMSE DMAE DMAPE

GraphGRU 0.0377 0.1547 3.4180 0.0306 0.1435 3.2768

GTMixer (Ours) 0.0049 0.0436 0.0882 0.0154 0.0957 0.2202

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 49

6 Decision Enforcement with Reinforcement Learning

Cloud-native applications are inherently dynamic, experiencing varying levels of activity throughout their
lifecycle [42]. With the cloud-edge ecosystem experiencing a significant influx of dynamic requests and
continuous growth, the efficient management of resources to deal with diverse workloads becomes essential
[43]. By leveraging real-time metrics on CPU and memory utilization, scheduling algorithms can take appropriate
resource allocation decisions, preventing SLA breaches and resource wastage [44]. Moreover, resource
management entails the efficient allocation of resources among various users or applications to maximize overall
system utilization. Resource allocation policies need to take into account workload diversity, ensuring fair access
to resources while preventing resource monopolization by individual users or applications [45]. In this
deliverable, we propose a strategy based on Reinforcement Learning (RL) for allocating CPU and memory
resources within a Multi-access Edge Computing (MEC) server that hosts heterogeneous services characterized
by different SLA requirements.

6.1 Reinforcement Learning for Resource Allocation

RL is a model-free approach that does not require prior information on the system models’ dynamics. It involves
agents that learn optimal policies through gradually interacting with the environment [46]. Leveraging the
abundance of data collected from heterogeneous networks [47], RL has become popular in recent years for
developing methods that deal with the resource allocation problem. A preliminary study is presented in [48],
combining Q-Learning and a heuristic approach for dynamically allocating resources on delay-sensitive services.
In [49], Q-Learning is used to obtain the optimum level of maximum CPU usage in a function instance to trigger
resource scaling decisions. Q-Learning-based approaches are also adopted in [50], [51] and [52] to determine
resource scaling actions in order to maintain low application latency and failure rates. Authors in [53] use a Deep-
Q-learning (DQN) based approach for resource allocation among different computation servers, while the works
in [54] and [55] tackle the problem of computation offloading by breaking it into smaller subtasks involving RL
algorithms. An actor-critic model has been implemented in [56] to optimize the allocation of radio and computing
resources and proved to outperform existing benchmarks, such as Deep Deterministic Policy Gradient (DDPG)
and DQN. Furthermore, a multi-agent distributed learning framework is proposed in [57] or making resource
orchestration decisions, while federated learning is leveraged in [58] and [59] to optimally allocate
communication and computing resources.

However, several key issues have not been addressed yet in the state-of-the-art literature. Computational load
generated from heterogeneous services associated with the end users, edge computing or any other additional
services is not considered together. In the present work, the following contributions are made to address the
aforementioned limitations:

• An intelligent strategy is developed for dynamically allocating resources within a MEC server to
heterogeneous services characterized by diverse demands and SLA requirements.

• The infrastructure's resource allocation is defined as a multidimensional problem with a known
capacity, where each dimension represents a specific resource type, namely CPU and memory.

• To guide resource allocation decisions, we employ a Soft Actor-Critic (SAC) agent. Compared to a
baseline random service allocator, the SAC agent demonstrates superior performance, achieving
higher usage efficiency ratios, while adhering to the SLA requirements of the diverse services.

6.1.1.1 System Model and Problem Formulation

A MEC server S is considered with fixed computational C and memory M capacities that provides N different
services to the end-users, as shown in Figure 22. The server considers the resource demands 𝐷𝑛 of the services,
which are represented as a resource tuple consisting of CPU and memory demands, and allocates the available

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 50

resources, which are also represented as a CPU-memory tuple (𝑐𝑛 , 𝑚𝑛). The services have heterogeneous SLA
requirements, which as shown in Table 4 ([60], [61]), are expressed in terms of maximum permissible delay. The
overall delay model is a combination of separate functions based on CPU and memory resources. For the
computational delay, a simple model based on the CPU demand-allocation ratio is used:

𝑙𝑐 = 𝛽
𝐶𝑃𝑈𝑑𝑒𝑚𝑎𝑛𝑑

𝐶𝑃𝑈𝑎𝑙𝑙𝑜𝑐

(22)

where 𝛽 is a weighting factor used for regulation. According to (22) when the CPU demand is higher than the
allocated CPU, the delay incurred will be higher and vice versa.

Delay experienced due to memory utilization is modelled as a piecewise linear function, as shown in (23) [62].
There are two scenarios under consideration: (i) when the allocated memory meets or exceeds the demanded
memory and (ii) when the allocated memory is lower than the demanded. In (23), 𝑙𝑠𝑢𝑟𝑝𝑙𝑢𝑠 and 𝑙𝑠𝑐𝑎𝑟𝑐𝑒 are the

minimum delays incurred under the two cases, while 𝜑 is the slope, which is derived based on reasonable delay
values from the literature.

𝑙𝑚 = {
𝑙𝑠𝑢𝑟𝑝𝑙𝑢𝑠 + 𝜑𝑙𝑑𝑒𝑚𝑎𝑛𝑑 if 𝑚𝑒𝑚𝑑𝑒𝑚 ≤ 𝑚𝑒𝑚𝑎𝑙𝑙𝑜𝑐

𝑙𝑠𝑐𝑎𝑟𝑐𝑒 + 𝜑𝑙𝑑𝑒𝑚𝑎𝑛𝑑 if 𝑚𝑒𝑚𝑑𝑒𝑚 > 𝑚𝑒𝑚𝑎𝑙𝑙𝑜𝑐

(23)

Figure 22: System model

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 51

Table 4: SLA requirements and Gn parameters

Type Services Max. Delay (s) GCPU Gmem

I Critical medical

application I
0.02 22950 38050

II Cyber-physical

systems
0.01 32000 40000

III Critical medical

application II
0.1 34200 42800

IV Video, imaging

and audio

application

0.00075 38450 23550

The resource allocation problem is formulated as a multidimensional problem with fixed capacity R. Each
dimension represents the total CPU and memory capacity, denoted as C and M, respectively. The objective is to
maximize the total utility by appropriately distributing the resources 𝐴𝑛 to the N slices at different time windows
as shown in (24):

𝑈 = 𝑚𝑎𝑥 ∑ 𝐺𝑛
[𝐶𝑃𝑈,𝑚𝑒𝑚]

𝑁

𝑛=1

𝐴𝑛
[𝐶𝑃𝑈,𝑚𝑒𝑚](𝑡)

(24)

where 𝐺𝑛 represents the gain attached with each resource type for each service; the values of parameter 𝐺𝑛 are
determined through experimentation and are listed in Table 4. In addition, several constraints are considered to
ensure strict surveillance of the allocation policy. Concretely, equation (25) limits the resource allocation based
on the available capacity at the server. Equation (26) prevents SLA violation by maintaining the probability of
allocated resources 𝐴𝑛 being less than the demanded resources 𝐷𝑛, below a maximum acceptable threshold 𝜀𝑛.
Finally, equation (27) prevents over-provisioning by imposing a maximum resource allocation ratio 𝑚𝑛 per
service:

∑ 𝐴𝑛
[𝐶𝑃𝑈,𝑚𝑒𝑚]

(𝑡)

𝑁

𝑛=1

≤ 𝑅[𝐶𝑃𝑈,𝑚𝑒𝑚](𝑡)
(25)

Pr (𝐴𝑛
[𝐶𝑃𝑈,𝑚𝑒𝑚]

(𝑡) < 𝐷𝑛
[𝐶𝑃𝑈,𝑚𝑒𝑚]

(𝑡)) ≤ 𝜀𝑛 (26)

𝐴𝑛
[𝐶𝑃𝑈,𝑚𝑒𝑚]

(𝑡)

𝐷𝑛
[𝐶𝑃𝑈,𝑚𝑒𝑚]

(𝑡)
≤ 𝑚𝑛

(27)

6.1.1.2 RL Formulation

The resource allocation problem is mapped into a Markov Decision Process (MDP), consisting of the state space,
the action space and the reward function, as shown in Figure 23. At every time step, the state space 𝑠𝑡 comprises
of the server’s maximum resource capacities C and M, the allocated resources 𝐴𝑛, the demands 𝐷𝑛, as well as
the delays 𝑙𝑛 at every network slice:

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 52

𝑠𝑡 = [𝐶, 𝑀, 𝐷1 , … , 𝐷𝑁 , 𝐴1, … , 𝐴𝑁 , 𝑙1, … , 𝑙𝑁]. (28)

The action space 𝑎𝑡 comprises of the CPU and memory resources assigned to the slices by the RL agent:

𝑎𝑡 = [𝑐1, … , 𝑐𝑁 , 𝑚1, … , 𝑚𝑁] (29)

The reward function in (30) guides the learning process by evaluating the actions taken at each time step:

𝑟(𝑡) = ∑ 𝑈𝑛
𝐶𝑃𝑈

𝑁

𝑛=1

𝑓(𝛿𝐶𝑃𝑈) + 𝑈𝑛
𝑚𝑒𝑚𝑓(𝛿𝑚𝑒𝑚) − 𝑃𝑛

𝑑𝑒𝑙𝑎𝑦
(30)

where 𝑈𝑛
𝐶𝑃𝑈and 𝑈𝑛

𝑚𝑒𝑚 are utility values associated with each resource type for each slice. The utility values are
calculated by multiplying the allocations with the gains per resource per slice i.e., 𝑈𝑛

𝐶𝑃𝑈 = 𝐺𝑛
𝐶𝑃𝑈𝑐𝑛(𝑡) and

𝑈𝑛
𝑚𝑒𝑚 = 𝐺𝑛

𝑚𝑒𝑚𝑚𝑛(𝑡). The reward function also depends on the differences 𝛿𝐶𝑃𝑈 and 𝛿𝑚𝑒𝑚 between the
allocations made by the agent and the actual demand.

𝑓(𝛿𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒) = {
1 if 𝛿𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ≥ 0
0 if 𝛿𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 < 0

(31)

In addition, 𝑃𝑛
𝑑𝑒𝑙𝑎𝑦 in

(32) penalizes the difference between the actual delay 𝑙𝑛(𝑡) and the maximum permissible delay 𝑙𝑛
𝑒𝑥𝑝for each

slice type, as reported in Table 4.

𝑃𝑛
𝑑𝑒𝑙𝑎𝑦(𝑡) = {

𝑤𝑛(𝑙𝑛(𝑡) − 𝑙𝑒𝑥𝑝) if 𝑙𝑛 > 𝑙𝑛
𝑒𝑥𝑝

0 if 𝑙𝑛 ≤ 𝑙𝑛
𝑒𝑥𝑝

(32)

The SAC algorithm is utilized for the resource allocation procedure, since it is appropriate for continuous state
and action spaces. SAC finds a policy 𝜋(𝑎𝑡|𝑠𝑡) i.e. a state-to-action mapping, that maximizes the sum of rewards

with maximum entropy given by 𝐽(𝜋) = ∑ 𝐸(𝑠𝑡,𝑎𝑡)[𝑟(𝑠𝑡 , 𝑎𝑡) + 𝑎𝐻𝜋(. |𝑠𝑡)]𝑇
𝑡=0 , in which 𝛼 controls the

stochasticity of the optimal policy and its importance with respect to the rewards. The algorithm finds this policy
through an iteration process consisting of a policy evaluation step and a policy improvement step. In the
evaluation step, a soft Q-function 𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝐽(𝜋) + 𝛾𝐸𝑠𝑡+1

[𝑉(𝑠𝑡+1)] is evaluated, where 𝑉(𝑠𝑡) =

𝐸𝑎𝑡~𝜋[𝑄(𝑠𝑡 , 𝑎𝑡) − log 𝜋 (𝑎𝑡|𝑠𝑡)]. By defining a modified Bellman backup operator [63] as 𝑇𝜋, a value sequence

is obtained in which each value is given by 𝑄𝑘+1 = 𝑇𝜋𝑄𝑘 . In the policy improvement step, 𝜋 is updated towards
the exponential of each new value of the soft Q-function. Every time the policy is updated, SAC guarantees that
𝑄𝜋𝑛𝑒𝑤 (𝑠𝑡 , 𝑎𝑡) ≥ 𝑄𝜋𝑜𝑙𝑑(𝑠𝑡 , 𝑎𝑡). Updating 𝜋 and 𝑄(𝑠𝑡 , 𝑎𝑡) in this way will yield an optimal policy. When considering
continuous state and action spaces, 𝑄 , 𝑉 and 𝜋 are defined through deep neural networks (DNNs), which are
optimized using stochastic gradient descent [64].

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 53

Figure 23: RL system

6.1.1.3 Performance evaluation

The proposed RL methodology is implemented in Python using Tensorflow 2.15 ([65], [66]). Table 5 specifies the
parameters used for the SAC agent’s training process, which have been appropriately tuned after
experimentation within the considered infrastructure. The training dataset has been obtained from the Google
cluster usage traces [67], with the CPU and memory demands of four different service types. A thorough
preprocessing and scaling has occurred on the considered data to emulate real-world cases. The SAC agent’s
resource allocation decisions are compared with a random service allocator, which takes its decisions based on
the gains of Table 4. Services with higher gains are favored under this approach. For each resource type and
service, the two methods are compared in terms of resource usage efficiency and delay.

Table 5: SAC parameters

Learning rate Episodes Steps Batch size Optimizer 𝛾 𝛼 𝜏

0.0001 20 1024 64 Adam 0.90 0.90 0.95

The results illustrated in Figure 24 and Figure 25 demonstrate the SAC agent’s superior comprehension of service
demands and available resources at the MEC server. As a result, it achieves a more favorable equilibrium
between resource demand and allocations, leading to significantly higher CPU utilization ratios for service types
I and II. It is noted that the proposed method attains similar outcomes for the remaining service types while
adhering to all constraints outlined in equations (25), (26), (27). On the contrary, the random service orchestrator
exhibits a notable over-allocation, resulting in resource wastage, which may affect the availability of resources
on the server. Similar outcomes are presented in Figure 26 and Figure 27 for the memory allocations regarding
service types II and IV, respectively. The SAC agent outperforms the random allocator, achieving much higher
utilization rates. This also holds for the rest of the services, proving that the proposed RL-based method is capable
of effectively managing multiple service types, maintaining high CPU and memory utilization rates.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 54

Figure 24: Average CPU efficiency for service type I

Figure 25: Average CPU efficiency for service type II

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 55

Figure 26: Average memory usage efficiency for service type II

Figure 27: Average memory usage efficiency for service type IV

Moreover, SLA requirements for the services need to be met in order to avoid degradation in the smooth
operation of the server. Figure 28 shows the maximum acceptable delay for service type III, as well as the average
delays achieved by the two methods. Although both allocators successfully meet the set threshold, as previously
discussed, this is achieved through a more efficient utilization of the available resources under the proposed SAC
agent.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 56

Figure 28: Average delay for service type III

6.1.2 Future Work on Reinforcement Learning for Energy-Aware Resource Allocation

Energy consumption in cloud-edge environments has shown rapid growth, leading to significant environmental
and economic impacts [68]. Energy-aware resource allocation can address these challenges by optimizing
resource utilization, minimizing energy consumption, while meeting performance requirements [69]. By
leveraging advanced algorithms that dynamically adjust resources in response to varying user demands, dynamic
workload patterns, heterogeneous resource characteristics, as well as latency and energy constraints,
organizations can achieve significant cost savings, mitigate environmental impact, and ensure seamless user
experiences [70].

Reinforcement learning holds immense potential for addressing the challenges of energy-aware resource
allocation in the cloud-edge continuum. Authors in [71] have devised a RL-based strategy to offload tasks based
on the service class and the energy they consume. A multi-agent RL algorithm is utilized in [72] to maximize the
long-term energy efficiency within heterogeneous networks. A resource allocation policy with power constraints
for IoT-based networks is developed in [73], while the concept of reward-oriented task offloading under limited
power resources is examined in [74].

However, there is a lack of focus in some important areas in the state-of-the-art literature. Many studies overlook
the sensitivity of tasks or services, neglecting their impact on energy consumption at the network edge. For
instance, a delay-sensitive task may demand more energy compared to a compute-sensitive task, or vice versa.
Understanding the specific resources utilized at the network edge is an aspect that has not been thoroughly
explored. Furthermore, the findings presented in most state-of-the-art research heavily rely on a single Key
Performance Indicator (KPI), which might not accurately represent real-world scenarios.

Taking into consideration the aforementioned limitations, in our future work, we are planning to expand the
model presented in the previous section developing an energy-efficient resource allocation strategy based on
RL. Currently, key aspects of the proposed model, such as the representation of the state and action spaces, as
well as the reward design, are under development. Our target is to consider an appropriate state space that
captures relevant information about the system, including workload characteristics, resource availability, as well
as energy consumption and resource utilization metrics. Moreover, the action space should include a set of
decisions that the RL agent takes to optimally allocate resources, such as vertical and horizontal scaling. Finally,
special focus will be given on formulating a reward function that incentivizes energy efficiency while penalizing
deviations from performance objectives, such as delay or throughput requirements.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 57

7 Network Programmability

AC3 specifically deals with federated cloud-edge infrastructures, and as such, the network infrastructure that
supports it must also be designed and managed with federation in mind. When dealing with such types of
infrastructure, there are several core factors that need to be addressed, specifically, transience and
heterogeneity:

• Federated infrastructures are by their nature transient, meaning that the environment can, and will,
change, dictating that we cannot make assumptions about fixed infrastructures being in place.
Therefore, AC3 must be capable of dynamically creating and configuring networks, as well as adapting
the network to the underlying infrastructure or application deployments.

• Federated infrastructures are also, by their nature, heterogeneous, meaning that the environment will
be made up of a broad range of different technologies carrying out the same or similar functions. This is
no different in respect to networking, especially in the world of virtualized networks, where more control
is given to engineers (developers/dev-ops) to build and create their own.

Therefore, the AC3 architecture must consider that individual infrastructure providers may utilize a number of
differing technologies and approaches in providing network connectivity, while at the same time having the
flexibility to adapt to changing infrastructure. Within this task, we address this through Network
Programmability, using virtualized networks that can be created, modified, and removed on demand. At the
same time, we explore how differing programmable network technologies can be used and managed within the
AC3 architecture.

Specifically, we investigate using both SD-WAN and Kubernetes-based networking as two common approaches
to providing programmable networking in the context of containerized applications. Both SD-WAN and
Kubernetes effectively address the transiency and heterogeneity issues facing federated infrastructures. SD-
WAN optimizes network paths, providing consistent performance and resilience in transient environments, while
Kubernetes mitigates heterogeneity by creating a unified orchestration layer that allows for consistent
management of resources, including networks. The combination of both enhances network and application
performance and provides uniform interactions across disparate environments.

7.1 State-of-the Art on Network Programmability

In the context of the AC3 project, we are focusing on two particular approaches to Network Programmability.
Specifically SD-WAN and Kubernetes-based network orchestration.

7.1.1 Software Defined Networking

The academic research on SD-WAN, in general, appears to be at an early stage, with very few research works
done on interconnecting cloud/edge/far edge using SD-WAN, particularly in cloud edge continuum. In addition,
besides considering works dedicated to only cloud interconnection, in this section, we have included works that
focus on enterprise networking and those that suppose a complete control of the underlay network, though, in
AC3 context, we are mainly concerned with interconnecting nodes, without having control over the underlying
networks.

[75] addresses the challenge of resiliency in an SD-WAN environment basically composed of two CPEs and dual
WAN links. They focus on traffic engineering for dynamic management and prioritization of network flow.
Leveraging Floodlight Controller, their architecture is composed of a Java-based SDN controller, and custom
software modules on top of it for traffic engineering. Authors in [76], propose an SDN-based network
architecture to improve cloud resiliency by interconnecting data centers through an overlay network managed
by a centralized controller. The overlay network represents different egress nodes, each acting as a gateway for

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 58

data centers positioned behind them. These egress nodes are connected to the Internet through different
Internet Service Providers (ISP). Their architecture utilizes Software Defined Networking (SDN) and Segment
Routing (SR) to dynamically adapt routing in response to network failures. Authors in [77] implement a testbed
supporting SD-WAN to connect two data centers. The goal is to guarantee the predefined QoS and traffic
prioritization. The controller was able to efficiently manage 300 VoIP calls, using a maximum of 16% CPU load.

B4 ([78][79][79], [79]) represents the software-defined inter-datacenter WAN deployed by Google. SD-WAN B4
connects data centers in different locations using a two-tier hierarchical control framework. At the lower layer,
each data center site contains a network controller and hosts local control applications managing site-specific
traffic. Meanwhile, at the top layer, a logically centralized traffic engineering server is implemented. This server
enforces high-level traffic engineering policies aimed primarily at optimizing bandwidth allocation between
competing applications across different data center sites [80]. Customized switches were designed to fit B4,
taking into account Google's inter-datacenter WAN and traffic characteristics. In B4, the network controller
dynamically reallocates bandwidth to meet evolving application needs while also offering dynamic rerouting in
the event of a link or switch failure. [81] introduces SWAN, a Software-Driven WAN system designed to improve
the utilization of inter-datacenter networks. By centrally controlling service traffic and reconfiguring the
network's data plane to align with current traffic demands, SWAN avoids transient congestion often caused by
uncoordinated updates in traditional networks. They showed that leaving 10% free link capacity allows for quick
congestion-free updates.

[82] presents an SD-WAN demo-test implementation leveraging open-source tools, focusing on improving
enterprise network services. Their implementation connects two branch offices to a headquarters, using
OpenDaylight [83] for SDN control, OpenvSwitch [84] for virtual switches, and monitoring services for dynamic
path selection. VyOS [85] was used for WAN virtual router emulation.

There are other open-source SD-WAN solutions like FlexiWAN [86] and EveryWAN [87]. In [86] the controller is
implemented based on Free Range Routing [88], and the edge device or route infrastructure using FD.io VPP
[89], and it envisages a more classic approach to SD-WAN with the control functionalities still running at the edge
in the virtual routers. EveryWAN, on the other hand, uses a hybrid IP/SDN approach where a local control logic
based on distributed IP routing coexists with a programmable IP forwarding engine controller by a SD-WAN
controller [87]. The Universal Customer Premises Equipment (uCPE) was implemented based on Linux
networking leveraging the pyroute2 [90] netlink library.

7.1.2 Kubernetes-based Network Orchestration

Container Network Interfaces (CNI) form the foundation for networking within Kubernetes, providing a container
with a network interface, IP addresses, subnets, and routing rules [67]. The CNI abstraction allows Kubernetes to
remain agnostic to the underlying network while ensuring that pods can communicate across nodes in the
cluster. There are various CNI implementations (plugins) which deliver a range of networking capabilities to the
cluster.

• Calico places an emphasis on strong network security through advanced policy enforcement, supports
both overlay and non-overlay networks, and is capable of running in large scale and multi-cluster
production environments [68].

• Flannel creates a mesh of layer 3 network subnets which are assigned to each Kubernetes node and is
particularly effective in environments where simplicity and ease of deployment are prioritized. It does
not manage network policies but can be used in conjunction with those which do and can be configured
to provide cross-cluster communication [69].

• Cilium provides the capability of recognizing, interpreting, and managing traffic based on application
level APIs which allows the network to understand and interact with the packets being transferred [70].

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 59

Cilium handles protocols such as HTTP, gRPC, and Kafka at the network layer, enabling security measures
and controls specific to each protocol. CiliumMesh could provide networking capabilities which enable
the connection of multiple clusters but relies on the Cilium CNI which must be adopted in each cluster.

While CNIs can be extended to support multi-cluster connectivity, their primary focus is intra-cluster networking.
This multi-cluster support is an additional capability rather than their main function. In contrast, CNI agnostic
tools like Skupper and Submariner are specifically designed for multi-cluster connectivity. They provide a more
straightforward and efficient link between clusters, with fewer prerequisites and less overhead.

Kubernetes provides its own set of network resources such as services, NodePorts, and Load Balancers, that sit
on top of the CNI, leveraging it’s capabilities to provide varied network features. For instance, ingress resources
are used to provide HTTP and HTTPS-based access to applications from outside a cluster.

However many of these features are highly oriented towards intra-cluster communication. Using these resources
to address inter-cluster communication can require significant configuration, can lead to compromised security
posture, or are often limited to HTTP only.

7.1.2.1 CNI-Agnostic Solutions

Skupper is a multi-cluster service interconnection tool for Kubernetes. In contrast to broader solutions like
Submariner and Cilium, Skupper connects specific namespaces rather than entire clusters through a Virtual
Application Network (VAN). It leverages virtual addressing to mirror services across clusters, simplifying
integration and improving security. The benefits of this include enhanced service discovery and inter-cluster
communication, utilizing mutual TLS for secure connections, and isolating traffic to prevent network attacks. This
targeted approach reduces the complexity typically associated with multi-cluster configurations [71].

Submariner provides a simple and direct networking solution for Pods and Services across different Kubernetes
clusters hosted either on-premises or in the cloud. As an open-source tool that is agnostic to network plugins
(CNI), Submariner uses a centralised broker architecture to manage cluster configurations and connectivity, and
straightforward service discovery within the same cluster [72]. Key advantages include an easy setup with a
broker to handle cluster credentials and efficient routing management. Traffic between clusters passes through
designated gateway nodes which are selected via leadership elections. This ensures a secure and structured data
flow and is optimal for environments requiring inter-cluster communication without the complexities of multi-
cluster services.

Istio provides a set of tools to manage microservices across clusters without being dependent on a specific CNI
as with CiliumMesh and Cilium. Its advantages include advanced traffic management, automatic mutual TLS for
secure communication, scalable policy enforcement, and observability through detailed telemetry [73].

Cloud-Native Wide Area Networks (CN-WAN) are designed to manage service connectivity across clusters and
service providers, independent of CNI’s. CN-WAN can provide optimized network traffic routing based on service
metadata, reduced latency through intelligent path selection, and dynamic network adaptation to support
enterprises in efficiently utilizing WAN resources to enable increased performance in a multi-cloud environment
[74].

Linkerd is a lightweight service mesh that is not dependent on a specific underlying CNI and focuses on enhancing
the security, speed, and reliability of service communications. Key advantages include minimal configuration,
automatic proxy injection, real-time failure detection and response, and extensive observability functionality.

7.2 Proposed Hybrid Architecture for Multi-layer Network Programmability

As discussed in Section 7.1, our Network Programmability solution must be able to cater for both transience and,
in particular, heterogeneity of infrastructure. The broader AC3 architecture addresses this through the

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 60

Adaptation and Federation layer, which acts as an adapter to bind to the specific APIs of the Local Management
Systems (LMS). The Network Programmability task of AC3 attempts to take this further by making no assumptions
on the specific network technology in use. That is, in the same way that the AC3 architecture presumes the
existence of multiple LMS for the management of compute resources, we also assume that there may be multiple
LMS for the creation and management of network resources. The LMS for the network can be based on multiple
technologies, here we focus on 2 broad types of networking; namely SDN, specifically SD-WAN, and CBN
(Kubernetes). In Figure 29, we show an example of the 2 technologies working in tandem to support the
networking needs of AC3. Here we see the LCM, which based on its acquired knowledge of the application and
resource utilization profiles, orchestrates the placement and deployment of the microservices, via the Decision
Enforcement and Adaptation Layer. As part of this process it provides the relevant deployment configuration
information of the microservices to the appropriate Network LMS: either the SD-Controller for managing SD-
WAN based data-centre networks; OR the AC3 Network Operator for managing Kubernetes-based data centre
networks. The selected LMS then attempts to configure the network in order to implement the required
connectivity.

Figure 29: Software Defined Networking and Container-Based Networking working together

In the context of AC3, we can classify Network Programmability functions into 2 broad categories:

• Proactive Network Configuration: The ability to configure networking on demand to support specific
application deployments or infrastructure configurations.

• Reactive Network Configuration: The ability to reconfigure the network in line with detected QoS or QoE
issues.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 61

7.2.1 SD-WAN

7.2.1.1 SD-WAN Overall Architecture

The proposed architecture abstract and aggregate the different networking resources (multiple heterogeneous
WAN paths) interconnecting the CECC nodes to the CECCM, and to introduce flexibility, agility and
programmability in managing deployed microservice’s traffic flow based on the defined SLA/QoS requirements,
and the network conditions. The overall architecture is composed of three planes: i) management, ii) control,
and iii) data plane, as depicted in Figure 30.

Figure 30: CECC SD-WAN Overall Architecture

Management Plane

As the overall SD-WAN architecture illustrates, the SD-WAN management plan is an integral part of the CECCM.
The management of WAN interconnecting CECC nodes belonging to different infrastructure providers is part of
the resource management in the CECCM management plane. The federation layer, which acts as an abstraction
layer between the management components and the various local management systems, can also federate
several SD-WAN controllers (WAN LMS) in the case of a distributed SD-WAN control plane. In addition to
computing infrastructure like cloud and edge LMS exposing APIs to the CECCM, the SD-WAN, acting as an LMS
for the networking resources part, exposes network management functionalities to the CECCM using its NBI. It
bridges the gap between the abstracted networking capabilities provided by the SD-WAN controller and the

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 62

operational demands of the App and Resources Mgmt component of the CECCM.

As the CECCM orchestrates the placement, deployment, and LCM of microservices, it is able to provide relevant
deployment configuration information to the SD-WAN controller identifying microservice traffic. This enables
the controller to configure SD-WAN edge devices with matching rules (like protocol, port number,
source/destination IP addresses, etc.) to identify and classify application traffic. These classes of traffic are
grouped based on QoS requirements, and different microservices can be classed into one class according to their
similar QoS requirements. These classes are defined at the CECCM level and passed to the controller in the form
of requests to be then pushed by the controller as configurations to the edge devices as matching rules, which
will be used for traffic identification and classification.

For instance, consider a microservice experiencing SLA degradation, such as exceeding the maximum acceptable
latency threshold while its traffic flows through overlay network “ON-1”, the CECCM, assessing both the overall
QoS requirements specified by the application developer and the current conditions of the network leveraging a
monitoring module, will request rerouting the microservice's traffic to a different overlay network “ON-2” that
satisfies the QoS requirements.

Subsequently, the controller implements policy adjustments to redirect the traffic through the tunnels of the
overlay network “ON-2”. These traffic updates could be static, specified by the application developer or the
CECCM user, or dynamic using an integrated AI/ML-based module such as RL.

In case more than one overlay link is satisfying the QoS requirements of a specific traffic class, the CECCM can
load balance traffic over overlay links that satisfies the QoS requirements of this class (e.g. per flow load
balancing). Another CECCM's management plane functionality is the deployment of edge devices, Virtual
Network Functions (VNFs), after adding a new CECC node.

Control Plane

Decoupled from the data plane, the control plane is fundamentally responsible for enforcing the control and
configurations of the edge devices. Through the NBI, the SD-WAN controller (Network LMS) receives network
update requests from the CECCM, and then translates these requests to a set of commands or configurations to
perform at the edge devices leveraging the SBI.

In addition to central management of the edge devices's networking aspects, from interface configurations and
overlay tunnels to routing tables and advanced policy-based routing decisions, the controller also handles the
monitoring agents on edge devices that monitor overlay tunnel specific network metrics (e.g., latency and packet
loss).

This global view of the network, in terms of different overlay topologies, and real-time network performance,
exposed to the CECCM can be leveraged for dynamic traffic management, and optimizing the microservice SLA
(network QoS requirements) fulfillment.

Data Plane

In a typical SD-WAN solution, for example, in enterprise networks, the data plane connecting different enterprise
branch sites and headquarters is established by creating overlay links over both private and public IP/WAN
infrastructures. However, in the CECC context the private IP/WAN connectivity is not always guaranteed, and
cloud/edge resources could be provided by different providers that do not share dedicated private IP/WAN links.

In order to connect the geographically separated CECC nodes and abstract the heterogeneous WAN connections
(broadband LTE/5G, Internet, MPLS, ect.) logical overlay links are created over the existing physical underlay
WAN infrastructures. The SD-WAN overlay network consists of the edge devices (also known as CPE/vCPE in
enterprise networking) and the set of logical tunnels created between these edge devices. Each edge device is
deployed at the border of each CECC node as a gateway between the CECC node’s (cloud or edge) local network

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 63

and the different WAN; hence, representing an endpoint for overlay tunnels.

These tunnels are created using different technologies such as VXLAN [91] or GRE [92] over IPsec to encapsulate
traffic between CECC nodes, thus providing secure communication paths and allowing flexibility in forwarding
behavior. The configurations of edge devices for instantiating overlay tunnels, defining policies, recognizing and
classifying traffic for application-driven routing and routing decisions are centrally managed at the control plane
and pushed by the SD-WAN controller to the edge devices leveraging its Southbound API.

In order to be able to dynamically route traffic of different services deployed in different CECC infrastructures,
edge devices, in addition to overlay packet encapsulation, need to be able to identify or recognize microservices
traffic based on defined policies and matching rules in order to route it through a specific overlay based on
defined QoS requirements or SLA agreements and network conditions, enabling an application-driven routing
which is detailed in the following section.

7.2.1.2 Architecture Instantiation

This section presents an instance implementation of the proposed architecture. The architecture depicted in
Figure 31 has been implemented based on the open source SD-WAN EveryWAN tool. We started by leveraging
the implementation of both the edge device and the controller of EveryWAN, and the adaptation agent of the
CECCM for interacting with the controller NBI (Annexe A).

In EveryWAN, the SD-WAN edge device was implemented as VNF, and can be deployed on any server providing
computing, storage and network interfaces. Designed with a hybrid IP/SDN approach, this SD-WAN edge device
combines a Programmable IP Forwarding Engine (P-IPFE), an IP routing daemon (IPRE) and a Southbound API
also implemented using gRPC. Besides programming the forwarding entries, the controller can override the
routing decisions taken by the IPRE. The IP Forwarding Engine was implemented using Linux networking, with
the pyroute2 python library facilitating interactions with the Linux kernel netlink interface.

Figure 31: Application aware routing

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 64

For traffic redirection of a specific application over a specific overlay network, It exists an E2E network slice in
their SD-WAN solution as a combination of LAN/VLAN interfaces and an overlay network. For isolation between
applications traffic in different overlay networks, a VRF lite approach was adopted mapping, for each overlay
network, one LAN/VLAN interface with one VRF and with one physical WAN interface. However, besides the
limitation of supporting only one underlay WAN interface in EveryWAN implementation, the E2E Slice definition
(vLAN - overlay network - vLAN) using VRF lite presents another limitation in our case. As an interface cannot be
slave to multiple VRF at the same time, the association of several overlay networks created on different underlay
WAN with the same LAN interface was not possible with VRF lite, knowing that virtual WAN interfaces and
bridging would raise complications.

To address these challenges and adapt to the CECC context, we reimplemented certain modules like the overlay
manager in the SD-WAN controller, and the different handlers in the SD-WAN edge. Additionally, we added other
needed modules like application-driven routing and monitoring.

Firstly, to support hybrid WAN connections, and enable overlay network over multiple underlay links without
losing the Layer 3 isolation, we opted for utilizing Linux routing tables as instances of P-IPFE instead of VRF.

Secondly, for the application-driven routing, as depicted in Figure 31 each Linux routing table of one overlay
network is mapped to one or a group of traffic classes instead of a one LAN/vLAN interface mapped to one VRF
instance. Each overlay network has a dedicated Linux routing table, thus enabling logical isolation from other
overlay networks and allowing microservices and applications from different overlays to have an isolated routing
behavior. Thus, we are not limited to the local interface to separate traffic, and each traffic class can have
multiple ingress interfaces (LAN/VLAN interfaces).

Figure 32: Service traffic identifier creation process

Figure 32 illustrates the process of defining an application for traffic classification and routing over a specific

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 65

overlay network (ON-1). As mentioned in above sections, the CECCM has a global view of applications
deployment, and information like deployment configurations and matching rules (e.g. protocol, port number,
source/destination ip addresses, etc.) can be provided as a JSON file to the CECCM network manager. This
information is used by the network manager to identify and classify service traffic, which then requests the SD-
WAN controller to the corresponding rules to the traffic classes. At the edge level, we used Linux IPTables tool
for traffic classification and marking and IPRule for redirecting the traffic marked with the traffic class mark over
the overlay routing table.

In addition, one of the main functionalities of the CECCM is dynamic rerouting in response to any experienced
SLA degradation, specifically microservice QoS requirement violation. For this, we have added overlay monitoring
to provide network metrics to the CECCM resource monitoring module, that can be used by an AI-based traffic
engineering module, for example, an RL algorithm for dynamic routing. In our initial implementation, we adopted
a straightforward active monitoring approach, in which network measurements including latency and packet loss
are periodically transmitted to the controller.

7.2.1.3 Performance Evaluation

In this section, we present the results of our evaluation tests, which include edge-level overlay creation time,
E2E overlay creation time, memory and CPU consumption of the SD-WAN edge device (VRF vs. Linux routing
table). The performance evaluations were conducted using a test bed comprising 2 edge devices and one SD-
WAN controller, each implemented as virtual machines (VMs). The edge devices were connected using two
different laboratory networks and the properties of a WAN were emulated using NetEm. The SD-WAN edge VMs
were allocated 2GB of RAM and 1 CPU, while the controller VM was allocated 4GB of RAM and 2 CPUs. The host
machine on which the edge device virtual machine was provisioned was equipped with an Intel® Core™ i7-1365U
processor with 10 cores, and 3.9GHz clock speed, and 32GB LPDDR5-6400MHz RAM.

7.2.1.3.1 Overlay Creation Time

Figure 33 shows a comparison of the time required to create SD-WAN overlay tunnels in a single SD-WAN edge
between our approach using Linux Routing Table (RT) approach and the VRF approach. Initially, with overlay
numbers under 100, both the VRF and RT approaches show a nearly constant time, followed by a linear increase
after 100 overlay tunnels. Overall, both approaches had similar overlay creation time with minor deviations.

Figure 34 represents the E2E time taken to create overlays from the MMO request moment to the overlay tunnels
establishment. These results closely resemble those in Figure 33 despite the slight delay due to the laboratory
network latency between the MMO/SD-WAN controller and the SD-WAN edges.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 66

Figure 33: Overlay creation time

Figure 34: E2E overlay creation time

SD-WAN Edge CPU Usage

The evaluation presented in Figure 35 considers the CPU usage of the SD-WAN edge Virtual Machine in terms of
the overlay tunnels number created at each time in both the VRF and the RT approach. The findings show a linear
rise in CPU usage as the number of overlay tunnels increases for both the VRF and the RT approach. The overall
performance of both approaches is similar, although the RT approach tends to have slightly lower CPU usage.

 SD-WAN Edge RAM Usage

Figure 36 illustrates memory usage for creating overlay tunnels, comparing between our approach using the
Linux RT and the VRF approach. The findings illustrated in Figure 36 show a linear, slow-rate increase in RAM
usage as the number of the overlay tunnels increase. Comparatively, the RT approach demonstrates memory
efficiency, consuming around 10% less memory than the VRF approach. This difference can be attributed to the
additional overhead associated with running multiple VRF instances.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 67

Figure 35: SD-WAN edge CPU consumption

Figure 36: SD-WAN edge RAM consumption

7.2.2 Kubernetes-based Network Orchestration

In terms of containerisation, undoubtedly one platform stands out as being the leader, and can almost be
considered the de-facto standard for container execution, management and orchestration. Kubernetes boasts a
host of features that make it the platform of choice for organisations of all sizes across industry. However, some
of the most powerful features of Kubernetes, and the ones that make it so suitable for building our Network
Programmability solution on, are [75]:

• Declarative Configuration: is a foundational feature of platforms such as Kubernetes. The desired state
of the network is detailed in a configuration file rather than specifying the steps required to achieve that
state. This streamlines network management, reduces errors, and drastically improves reproducibility
across different environments.

• Extensibility: allowing users to define custom resources that can be created and managed in the exact
same way as any first-class platform resource.

• Common API-based management leverages standardised APIs to orchestrate and monitor network
resources in Kubernetes. A unified interface allows developers to interact with services and plugins

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 68

without having to alter the underlying network. This provides enhanced flexibility, scalability, and
adaptability with regards to the networking framework.

In this work we leverage these core platform features to deliver the AC3 Network Operator. The aim of this
component is to provide a novel management layer for multi-cluster network configuration and management.
Specifically, this component aims to:

• Implement the AC3 LMS for Kubernetes, enabling AC3 to manage and control K8s based networks

• Enable automated creation and configuration of multiple network overlays of varying types within
Kubernetes

• Dynamically adapt the network configuration based on monitoring data in order to improve performance

• Be extensible, in order to support the integration of additional Kubernetes network technologies,
supporting multiple overlays of varying types

7.2.2.1 AC3 Network Management Operator

As shown in Figure 37, the AC3 network operator implements the network LMS interface to the broader AC3

architecture, allowing AC3 to manage and control the network configuration within a given Kubernetes cluster.
The operator pattern in Kubernetes is an extremely powerful extensibility mechanism that allows developers to
add additional functionality to the k8s platform, but in a way that it is viewed and managed as part of the platform
itself. Operators consist of both a Custom Resource Definition and a controller to manage these resources.

Figure 37: Network management operator

The beauty of this approach is that it allows the central AC3 control plane to manage the network through the
same interface with which it can manage any other resource (e.g. provision nodes, deploy applications, etc.).
However, this operator provides AC3 an abstraction layer to the underlying Kubernetes network technologies,

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 69

meaning AC3 does not need to be aware of the specific technology delivering the network connectivity. Instead,
AC3 simply requests connectivity to be created or modified, and the operator will attempt to execute this based
on the available network solution.

We also need to consider that there may be multiple different types of interconnected infrastructures that may
want to join an AC3 federation. Some infrastructure providers may have closer commercial ties, and therefore
have much more tightly coupled technical and security domains, while others may effectively be discrete
clusters. In Kubernetes, these translate as multi-clusters with differing forms of control plane architectures. For
instance, some data center providers may share a control plane through technologies like Open Cluster
Management (OCM), whereby a single control plane administers different clusters. In this model, these multiple
clusters can be managed by a single LMS via a central Kubernetes API, meaning that network interconnectivity is
more easily established. With standalone clusters, the benefit of Kubernetes is that there is still a standard
management API, meaning all network management tasks are executed in the same way. The core difference
being that we need to assume security access is granted across all clusters within the AC3 federation. In reality
this means that each network operator needs to have access to the APIs of all other clusters in order to be able
to link clusters. We aim to be flexible enough to cater for both these scenarios, where the underlying technology
used may vary based on the type of control plane used.

7.2.2.2 Custom Resource Definitions (CRD)

As mentioned above, a key part of this pattern is the Customer Resource Descriptor (CRD) that provides the
schema definition (and effectively the API) for the new network management resource. Within this project we
aim to leverage existing standards specifications, specifically the NetworkGraph object from the NetJson data
interchange format (REF). This provides the decorative description of what the overlay connections between the
nodes/applications in the network are required by the AC3 control plane. The creation or modification of this
definition triggers the controller to then configure the underlying network technologies to deliver this topology.
A simplified NetworkGraph example:

{
 "type": "NetworkGraph",
 "label": "Test Network",
 "networkType": "van" # mesh, l3, etc

"links": [
 {
 "source": "cluster1-namespace1",
 "target": "cluster2-namespace1",
 "cost": 1.000
 },
 {
 "source": "cluster1-node1",
 "target": "cluster2-node1",
 "cost": 1.000
 },
 {
 "source": "cluster2-node1",
 "target": "cluster2-node1",
 "cost": 1.000
 }

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 70

]
}

7.2.2.3 AC3 Network Controller

The controller in the AC3 operator monitors its managed resource descriptors, and based on any change, will
attempt to create or modify the state of the actual resources in order to align with the requested state.
Specifically the controller will attempt to create the requested links between the nodes (applications) using a
specific Kubernetes-based network technology. Depending on the type of network connectivity required,
different technologies can be employed.

There are common approaches to delivering virtualised networks within the platform itself. Leveraging the
underlying CNI, these approaches offer scalable, flexible, and efficient networking solutions, enabling inter-pod
communications within a cluster as well as providing access to external services. For instance nodeports, ingress
routers and load balancers. While these can support inter-cluster communication, they are typically oriented
towards intra-cluster communications, or enabling external access to pods on an individual basis. This makes
them not well suited as a comprehensive multi-cluster solution, with issues such as limited protocol support,
limited port ranges, limited scalability and performance, as well as security. However there are also many
powerful 3rd party networking solutions (for example Submariner and Skupper) that offer additional networking
features and capabilities, which utilise the extensibility mechanisms of Kubernetes to integrate seamlessly into
the platform. Therefore the technologies currently in scope are Skupper for VAN overlays, and Submariner for
layer 3 overlays. For instance, based on a required connection between 2 services, each deployed in a
container/pod and hosted in different clusters, the AC3 network operator can configure Skupper to create
application specific links between these 2 services.

7.2.2.4 Proactive Network Configuration mechanisms

One of the core aspects of the AC3 network operator is to provision and configure networks between clusters, in
order to support the deployment and management of AC3 applications. This will be done based on instruction
from AC3’s Decision Enforcement component, via the Adaptation and Federation layer. As mentioned in the
previous section, the CRD effectively acts as an interface for AC3 to instruct the network operator to create or
modify the network, which will subsequently trigger the controller to create or modify Skupper or Submariner
resources. An overview of Skupper and Submariner is presented in D2.3, however here we will go into more detail
on the specific elements of these technologies that the AC3 Network Operator will configure and modify in order
to create the required overlays.

7.2.2.4.1 Skupper Overview

In a Skupper network, the connections between Skupper routers are secured with mutual TLS using a private,
dedicated Certificate Authority (CA). Each router is uniquely identified by its own certificate. Skupper ensures
security through TLS encryption, mutual TLS authentication and Role Based Access Control (RBAC). These
safeguards help maintain the confidentiality and integrity of communication while ensuring only authorised
services can interact with each other. Additionally, it's worth noting that Skupper links are namespace-specific,
providing isolation and control over communication within individual namespaces.

7.2.2.4.2 Skupper Network Configuration

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 71

The process of installing and configuring Skupper in order to link different namespaces creates a number of
Kubernetes resources. The core components are:

• Skupper Router: Apache Qpid Dispatch Router that handles the actual routing of messages between
services across clusters.

• Site Controller: Manages the configuration of the scupper site, including artefacts such as configmaps
and tokens.

• Skupper Service Controller: Handles setup and maintenance of inter-cluster connections, updates
routing configuration dynamically when changes occur, exposes local cluster services to other clusters,
manages network topology and keeps track of which services are where and how they are connected.

The deployment of the Skupper resources is typically done via CLI, but can also be done directly via YAML files.
The sample below demonstrates a declarative descriptor for a Skupper router. We can leverage this to
automatically create routers based on the connectivity required by AC3 and expressed in the network operator
CRD.

There are also other advanced configurations and settings that we can exploit. For instance, Skupper can support
service load balancing configurations, adjusting traffic distribution across multiple instances when service
performance is impacted, thus ensuring constant communication between services across Kubernetes clusters.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 72

Figure 38: Skupper configuration

When Skupper is configured in a specific namespace, we can then create links from that namespace to
namespaces in other clusters. The process of linking 2 namespaces centers around the creation of a token which
stores the credentials such as the CA certificates, client certificate and key, and a connection URL which points
to the AMQP router on the originating site. The router on the second site is configured with the contents of this
token to establish a communication channel, apply routing rules, and synchronize network topology. While some
resources like routers can be configured automatically, others such as the sharing of tokens to establish links
require manual setup. This is an area we aim to extend Skupper in the context of AC3 by making this an automated
process, using the AC3 network operator to create the required tokens in other clusters using the K8s API.

7.2.2.4.3 Submariner Network Configuration

Following the same basic approach as above, we can also create Submariner configuration resources in order to
create and modify Submariner-based network configuration. This involves installing Submariner components
across Kubernetes clusters, defining CRDs for managing connectivity and service discovery, setting parameters,
establishing secure connections between clusters, testing communication between workloads and maintaining
ongoing monitoring and integration with network plugins. In doing so, having to tailor the configuration to
specific requirements ensures effective deployment and management of Submariner-based network
connectivity.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 73

Figure 39: Submariner configuration

The main Submariner architectural components are shown in Figure 39. Of specific interest are the Route Agent,
Gateway Engine and Broker. Route Agents are responsible for managing the routing tables and for routing inter-
cluster traffic from the node to the cluster’s active Gateway Engine, who then sends the traffic to the destination
cluster. The Gateway Engine is responsible for creating and maintaining the IPSec tunnels between clusters. The
Broker is a central component, installed on a single cluster, that facilitates the exchange of meta-data (specifically
CRDs) between clusters. These CRDs, such as endpoint and cluster, contain information about the active Gateway
Engine in a cluster, and static information about the originating cluster, such as its service and pod CIDRs.

Unlike Skupper, where each namespace needs to be specifically linked, in Submariner the cross-cluster
connection is at the cluster level. So when we join a cluster to the network, a gateway is automatically
provisioned, and services within the network are then visible to any connected cluster.

7.2.2.5 Reactive Network Configuration Mechanisms

In the AC3 network context, reactive network configuration involves dynamically adjusting network settings
based on real-time conditions to improve the performance and resource allocation for applications in a
Kubernetes cluster. A key call out within this block of work is that we are dealing with virtualized overlay
networks, which provide an abstraction on the underlying physical network. As a result, we are limited in the
level of fine-grained control we can exert on the network in terms of routing, traffic classification and
prioritization, etc. However, within AC3 we are currently exploring several mechanisms that allow us to react to
undesirable conditions within the network and improve the QoS experienced. These approaches are outlined
below.

7.2.2.5.1 Multi-overlay Networks

This approach involves dynamically creating multiple overlay networks between applications or clusters in order
to distribute network traffic more efficiently, thereby increasing network performance. Within this approach
there are 2 potential areas of investigation, load balancing and traffic segmentation.

Load balancing will create multiple overlays with the aim of evenly distributing traffic between them. That is to
say that the distribution of traffic is not based on any type of traffic classification. This enhances network
performance by dynamically balancing traffic based on factors like network conditions and application

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 74

requirements. Traffic segmentation then involves creating and assigning dedicated overlays to specific types of
traffic based on predefined criteria. By segmenting traffic, the network operator can ensure that certain types of
traffic receive preferential treatment. For instance, traffic with higher latency requirements, such as voice or
video, can be segmented into a set of overlays, with a suitable set of resources applied.

In Skupper the primary components responsible for managing the tunnel and routing traffic are the router and
the controller. When establishing a connection between 2 namespaces, two routers are created per namespace,
these include an Apache Qpid dispatch router which handles the actual routing of messages between services,
and a sidecar router responsible for tasks like collecting metrics and monitoring. Whereas the controller itself
orchestrates the deployment, configuration and monitoring of the Skupper components. Namespaces can be
allocated on a per-application basis but also can be shared by multiple applications, subject to the organization's
policies. So, there is a clear performance concern where multiple high-throughput applications can be
communicating across a single VAN link, or single extremely high-throughput applications would have only a
single router on a given node. Our aim then is to dynamically create multiple Skupper routers per namespace,
subject to network conditions, and to then balance requests across these overlays. By creating additional router
pods we are also allocating more CPU/memory resources to routing. Figure 40 shows a sample architecture for
this multi-router overlay. The broker-based approach is a common mechanism to balance traffic between
routers, but also creates a bottleneck at the broker. We will also examine non-broker-based approaches to
maximize resilience.

Figure 40: Multiple skupper routers

In Submariner, Gateways are the primary mechanism of establishing and controlling the virtual tunnels between
clusters. These tunnels are at the cluster (site) level, meaning all applications in a given cluster will share the
same connection. This presents a potential performance bottleneck, whereby high-throughput or high-
bandwidth applications could negatively impact the overall performance of all applications on the same cluster.
Our proposal is to establish multiple gateways per cluster and allow for balanced routing between them. This
also increases the resilience of the Submariner network, as if a single active gateway fails in the current
implementation, work must be done to switch over to a new gateway, including making new tunnels and new
routes, which takes time.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 75

Figure 41: Multiple gateways per cluster

7.2.2.5.2 Adaptive Routing Resource Allocation

One of the major benefits of Kubernetes is that the declarative descriptions of resources can be modified in real-
time to adapt to changing conditions within the platform. When we provision network resources that provide
specific network functions, we can also adjust these as needed to react to performance concerns. As an example,
the Skupper router, responsible for routing traffic from individual namespaces between clusters, creates a
Kubernetes pod with a CPU and memory allocation. These allocations can be dynamically updated, and the pod
restarted in order to improve the performance of the router.

apiVersion: v1
kind: ConfigMap
metadata:
 name: "skupper-site"
data:
 name: "my-site"
 router-cpu: 2

We can also directly modify the deployment description for a given router container to alter the requested CPU
and memory as well as their limits.

resources:
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"

7.2.2.5.3 Service Load Balancing

One clear mechanism to allow us to impact the experienced QoS is to modify the load balancing configuration of
the services, in order to remove load on individual (virtual) network interfaces, network links, etc. This can take
several forms:

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 76

• Provisioning new pods on different nodes and configuring/modifying load balancing rules.

• Provisioning new Pods on different clusters and configuring/modifying load balancing rules.

Both Skupper and Submariner offer features that can be used to support this load balancing. For instance,
Skupper has visibility across clusters as to both service load and available capacity. So, where services are
replicated in multiple locations, Skupper can direct requests to specific instances based on available capacity.
The AC3 network operator can then leverage this feature to dynamically modify the deployment location of the
services and update the Skupper configuration accordingly, such that load-balancing happens automatically.
Furthermore, a cost can be associated with individual links such that we can tailor preferential links.

However, a key consideration is that any alteration of the service placement in the context of load balancing
must be done with consideration for the overall service placement strategy as derived by the AC3 LCM. That is,
modifying the load balancing strategy should not violate the service placement decisions made to optimize the
resource usage or energy efficiency of the overall system. The link cost feature is something that could be utilized
in this regard, assigning link weightings in line with the core placement strategy in order to mitigate significant
violations.

7.2.2.5.4 Rate Limiting

Rate limiting is a common approach to throttle the level of incoming requests to a given service in order to reduce
certain performance on the service. When we identify a performance issue within a specific network link, we
can implement rate limiting to safeguard the available resources. For instance, we could configure the ingress
load balancer (NetScaler) to limit the number of requests from a specific location or to a specific application
(URL). This is the least desirable approach to managing network performance as, while it preserves the integrity
of the service, it has the potential to impact the overall user experience if requests are dropped by throttling.
This approach should be done in conjunction with an appropriate service load balancing strategy.

7.2.2.6 Network Monitoring

Another required capability for the Network Programmability component is to expose resources and their
metrics to the central AC3 Resource Discovery and Monitoring components. Also, by proactively monitoring the
network, the AC3 network operator can detect and respond to any anomalies or issues that may arise, allowing
for timely mitigations to be implemented and ensuring a reliable network for applications running within the
cluster.

In this work we will simply leverage the industry standard Kubernetes monitoring approach, which is typically
performed by the Prometheus platform, due to its seamless integration and powerful feature set. In particular
its customisable application and system metrics capturing, expressive query language, metrics API and alerting
framework. Another important feature is its extensibility. For example the Node Exporter extension allows
metrics for the underlying nodes hardware to be gathered.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 77

Figure 42: Network monitoring

One of the key tasks going forward is to identify the common set of metrics that all network LMS’s should monitor
and return to the monitoring component. Within the context of the AC3 network, this would cover values such
as latency, throughout and connection stats.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 78

8 Conclusions

In this deliverable, we presented the initial work pertaining to WP4. We emphasized the progress made in the
development of mechanisms for resource discovery and monitoring, Section 4. This includes a unified monitoring
data model, emphasizing the need for a comprehensive schema that captures dynamic resource states (CPU,
memory, storage), classifies resources by type (edge, cloud), tracks energy sources, and determines geographical
locations. We also presented our mechanism for collecting the monitored data and explained the data collection
processes for both computing and networking. We provided the operational and application-specific metrics
required for the AI-based LCM. This sets the foundation for obtaining the data emanating from the federated
infrastructure and for building the resource management capabilities allowing for zero-touch management and
configuration, Section 5.

To materialize the promise of AI-based LCM in the context of CECC, several new and innovative AI/ML approaches
have been developed, Section 5. The first approach is based on XAI for fine-grained resource autoscaling. This
approach combines an ML mechanism, XGBoost, with an explainer, SHAP, for explainable detection of SLA non-
compliance and implementation of autoscaling procedures, Section 5.3.2. The second approach uses the
Temporal Fusion Transformer for explainable prediction of latency, Section 5.3.3, complementing the
mechanism based on XGBoost and presented in Section 5.3.2. The third approach employs a spatio-temporal
GNN for resource prediction, particularly workload prediction for volatile nodes using dynamic GNNs, 5.3.4. To
consider the prediction results and implement autoscaling procedures, we develop a resource management
strategy using RL mechanisms based on a Soft Actor-Critic (SAC) agent, Section 6. To allow the traffic of
microservices across the CECCM, a hybrid architecture for multi-layer Network Programmability has been
developed in Section 7, where we consider technologies such as Skupper and Submariner.

With regard to Network Programmability, we focus on Software Defined Networking (SDN) and Container-Based
Networking (CBN) (Kubernetes), where we provide the possibility for proactive and reactive network
configuration. We adapted the SD-WAN architecture by reimplementing certain modules, such as the overlay
manager in the SD-WAN controller and the different handlers in the SD-WAN edge. Additionally, we added
necessary modules like application-driven routing and monitoring, and we considered an overlay monitoring to
provide network metrics to the CECCM resource monitoring module, which can be utilized by an AI-based traffic
engineering module. Regarding CBN, we adopted Kubernetes-based network orchestration by designing and
building a custom AC3 network operator. This operator allows to manage and control network configuration
within a given Kubernetes cluster. We also proposed a mechanism for multi-overlay networks, involving
dynamically creating multiple overlay networks between applications or clusters to distribute network traffic
more efficiently, thereby increasing network performance. We provided a capability which by proactively
monitoring the network allows the AC3 network operator to detect and respond to any anomalies or issues that
may arise, allowing for timely mitigations to ensure a reliable network for applications running within the cluster,
Section 7.2.2.6.

As for future work, whose results will be reported in D4.2, we will be extending the work presented in this
deliverable to consider the energy aspect in the AI-based LCM of microservices. Moreover, we will present the
operationalization and performance of the monitoring system and discuss its scalability in dealing with various
use cases (T4.1). Using the data emanating from the monitoring system, we will report the metrics pertaining to
resource and energy usage predictions (T4.2). Specifically, we will present the reduction of SLA non-compliance
in an application due to AI/ML resource management capabilities. We will also provide the knowledge model
that will be developed to better understand the resource usage and availability (T4.2). We will highlight the
performance of the algorithms for the placement, migration, and duplication of microservices on top of the CECC
federated infrastructure (T4.3). Additionally, we will report the performance of the Network Programmability
approach through its operationalization using SDN and CBN. Key metrics such as decreased downtime caused by

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 79

traffic redirection due to Network Programmability and its influence on SLA non-compliance will be provided.
Finally, we will show that the implementation of the Network Programmability mechanism will reduce the time
needed to update network resources (T4.4).

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 80

9 References

[1] https://github.com/netscaler/netscaler-adc-metrics-exporter
[2] https://docs.netscaler.com/en-us/citrix-adc/current-release/observability/prometheus-integration.html
[3] https://docs.tigera.io/calico/latest/about
[4] https://submariner.io/operations/monitoring/
[5] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune and J. Wilkes, “Large-scale cluster

management at Google with Borg,” In Proceedings of the 10th European Conference on Computer
Systems (EuroSys '15). Association for Computing Machinery, New York, NY, USA, Article 18, 1–17.

[6] M. Usman, S. Ferlin, A. Brunstrom and J. Taheri, “A Survey on Observability of Distributed Edge &
Container-Based Microservices,” In IEEE Access, vol. 10, pp. 86904-86919, 2022, doi:
10.1109/ACCESS.2022.3193102.

[7] S. Jhingran and N. Rakesh, “Application Deployment and Performance Measurement in Serverless Cloud
for Microservices,” In 2023 International Conference on Sustainable Emerging Innovations in Engineering
and Technology (ICSEIET).

[8] T. Khan, W. Tian, G. Zhou, S. Ilager, M. Gong and R. Buyya, “Machine learning (ML)-centric resource
management in cloud computing: A review and future directions,” In Journal of Network and Computer
Applications. Volume 204, 2022, 103405, ISSN 1084-8045.

[9] H. Mao, M. Alizadeh, I. Menache and S. Kandula, “Resource Management with Deep Reinforcement
Learning,” In Proceedings of the 15th ACM Workshop on Hot Topics in Networks (HotNets '16). Association
for Computing Machinery, New York, NY, USA, 50–56.

[10] N. Roy, A. Dubey and A. Gokhale, “Efficient autoscaling in the cloud using predictive models for workload
Forecasting” In 4th International Conference on Cloud Computing, 2011, pp. 500–507.

[11] M. Abdullah, W. Iqbal, A. Erradi and F. Bukhari, “Learning predictive autoscaling policies for cloud-hosted
microservices using trace-driven modeling,” In IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), Sydney, Australia, December 11-13, 2019. IEEE, 2019, pp. 119–126.

[12] T. S. Janjanam, K. S. Siram and P. K. Kollu, “Cloud resources forecasting based on server workload using
ml techniques”. In International Conference on Intelligent Data Communication Technologies and
Internet of Things (IDCIoT), 2023, pp. 427-433.

[13] I. K. Kim, W. Wang, Y. Qi and M. Humphrey, “Forecasting cloud application workloads with cloudinsight
for predictive resource management,” In IEEE Transactions on Cloud Computing, vol. 10, no. 3, pp. 1848–
1863, 2022.

[14] T. Mehmood, S. Latif and S. Malik, “Prediction of cloud computing resource utilization,”. 2018 In 15th
International Conference on Smart Cities: Improving Quality of Life Using ICT IoT (HONET-ICT), 2018, pp.
38–42.

[15] M. Borkowski, S. Schulte and C. Hochreiner, “Predicting cloud resource utilization,” In IEEE/ACM 9th
International Conference on Utility and Cloud Computing (UCC), 2016, pp. 37–42.

[16] P. Nawrocki, P. Osypanka and B. Posluszny, “Data-driven adaptive prediction of cloud resource usage,”
J. Grid Comput., vol. 21, no. 1, jan 2023.

[17] F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila, N. T. Hieu and H. Tenhunen, “Energy-aware vm
consolidation in cloud data centers using utilization prediction model,” In IEEE Transactions on Cloud
Computing, vol. 7, no. 2, pp. 524–536, 2019.

[18] G. Christofidi, K. Papaioannou and T. D. Doudali, “Toward pattern-based model selection for cloud
resource forecasting,” In Proceedings of the 3rd Workshop on Machine Learning and Systems, ser.
EuroMLSys’ 23. New York, NY, USA: Association for Computing Machinery, 2023, p. 115–122.

[19] G. Christofidi, K. Papaioannou and T. D. Doudali, “Is machine learning necessary for cloud resource usage
forecasting?” ACM Symposium on Cloud Computing, ser. SoCC ’23. New York, NY, USA: Association for
Computing Machinery, 2023, p. 544–554.

https://github.com/netscaler/netscaler-adc-metrics-exporter
https://docs.netscaler.com/en-us/citrix-adc/current-release/observability/prometheus-integration.html
https://docs.tigera.io/calico/latest/about
https://submariner.io/operations/monitoring/

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 81

[20] J. Bi, S. Li, H. Yuan and M. Zhou, “Integrated deep learning method for workload and resource prediction
in cloud systems,” In Neurocomputing, vol. 424, pp. 35–48, Feb. 2021, publisher Copyright: © 2020
Elsevier B.V.

[21] D. B. Prats, J. L. Berral, C. Wang and A. Youssef, “Proactive container auto-scaling for cloud native
machine learning services,” In IEEE 13th International Conference on Cloud Computing (CLOUD), pp. 475–
479, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID: 229358051.

[22] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura and R. Bianchini, “Resource central:
Understanding and predicting workloads for improved resource management in large cloud platforms,”
26th Symposium on Operating Systems Principles, ser. SOSP ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 153–167.

[23] M. Daraghmeh, A. Agarwal, R. Manzano and M. Zaman, “Time series forecasting using facebook prophet
for cloud resource managemen,” In IEEE International Conference on Communications Workshops (ICC
Workshops), 2021, pp. 1–6.

 [24] M. E. Karim, M. M. S. Maswood, S. Das and A. G. Alharbi, “Bhyprec: A novel bi-lstm based hybrid
recurrent neural network model to predict the cpu workload of cloud virtual machine,” IEEE Access, vol.
9, pp.131 476–131 495, 2021.

[25] W. Shu, F. Zeng, Z. Ling, J. Liu, T. Lu and G. Chen, “Resource demand prediction of cloud workloads using
an attention-based gru model,” In 17th International Conference on Mobility, Sensing and Networking
(MSN), 2021, pp. 428–437.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser and I. Polosukhin,
“Attention is all you need,” In Advances in Neural Information Processing Systems, 2017, pp. 5998–6008.

[27] Z. Zhou, C. Zhang, L. Ma, J. Gu, H. Qian, Q. Wen, L. Sun, P. Li and Z. Tang, “Ahpa: adaptive horizontal pod
autoscaling systems on alibaba cloud container service for Kubernetes”. In Thirty-Seventh AAAI
Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial
Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence, ser.
AAAI’23/IAAI’23/EAAI’23. AAAI Press, 2023.

[28] S. Xue, C. Qu, X. Shi, C. Liao, S. Zhu, X. Tan, L. Ma, S. Wang, S. Wang, Y. Hu, L. Lei, Y. Zheng, J. Li and J.
Zhang, “A meta reinforcement learning approach for predictive autoscaling in the cloud,” In 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, ser. KDD ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 4290–4299. [Online]. Available:
https://doi.org/10.1145/3534678.3539063.

[29] Z. Wang, S. Zhu, J. Li, W. Jiang, K. K. Ramakrishnan, Y. Zheng, M. Yan, X. Zhang and A. X. Liu, “Deepscaling:
microservices autoscaling for stable cpu utilization in large scale cloud systems,” In 13th Symposium on
Cloud Computing, ser. SoCC ’22. New York, NY, USA: Association for Computing Machinery, 2022, p. 16–
30.

[30] B. Lim, Bryan and S. Zohren, “Time-series forecasting with deep learning: a survey. Philosophical
Transactions”. In Series A, mathematical, physical, and engineering sciences. 379. 20200209.
10.1098/rsta.2020.0209.

[31] M. Mekki, B. Brik, A. Ksentini and C. Verikoukis, “XAI-Enabled Fine Granular Vertical Resources
Autoscaler,” In 9th International Conference on Network Softwarization (NetSoft), Madrid, Spain, 2023,
pp. 161-169, doi: 10.1109/NetSoft57336.2023.10175438.

[32] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” In 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY, USA: ACM, 2016, pp.
785–794.

[33] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions”. In Advances in
Neural Information Processing Systems, vol. 30, 2017.

https://api.semanticscholar.org/CorpusID
https://doi.org/10.1145/3534678.3539063.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 82

[34] ENI Vision: Improved Network Experience using Experiential Networked Intelligence, ETSI ENI White
paper.

[35] Network Functions Virtualization (NFV) Release 3; Architecture. Report on the Enhancements of the NFV
architecture towards Cloud-native and PaaS. ETSI GR NFV-IFA 029 V3.3.1, Nov. 2019.

[36] M. T. Ribeiro, S. Singh and C. Guestrin, “Why should i trust you? Explaining the predictions of any
classifier,” In 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016,
pp. 1135–1144.

[37] B. Lim, S. Arık, N. Loeff and T. Pfister, “Temporal fusion transformers for interpretable multi-horizon
time series forecasting,” In International Journal of Forecasting, vol. 37, no. 4, pp. 1748– 1764, 2021.

[38] A. Vaswani, N.Shazeer, N.Parmar, J.Uszkoreit, L.Jones, A.N.Gomez, Ł. Kaiser and I. Polosukhin, “Attention
is all you need”. In Advances in Neural Information Processing Systems, 2017, pp. 5998–6008.

[39] H. He, L. Su and K. Ye, “Graphgru: A graph neural network model for resource prediction in microservice
cluster,” In 28th International Conference on Parallel and Distributed Systems (ICPADS), Nanjing, China,
2023, pp. 499-506, doi: 10.1109/ICPADS56603.2022.00071. pp. 499–506, 2023.

[40] A. Sankar, Y. Wu, L. Gou, W. Zhang and H. Yang, “Dynamic graph representation learning via self-
attention networks,” In ArXiv abs/1812.09430 (2018).

[41] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi, T. Kaler, T. B. Schardl and C. E.
Leiserson, “Evolvegcn: Evolving graph convolutional networks for dynamic graphs,” In
ArXiv abs/1902.10191 (2019): n. pag.

[42] J. Dogani, R. Namvar and F. Khunjush, “Auto-scaling techniques in container-based cloud and edge/fog
computing: Taxonomy and survey,” In Computer Communications, pp. 120-150, Sep. 2023.

[43] J. Dogani, F. Khunjush, M.R. Mahmoudi and M. Seydali, “Multivariate workload and resource prediction
in cloud computing using CNN and GRU by attention mechanism,” In The Journal of Supercomputing, pp.
3437–3470, 2023.

[44] C. Zhu, B. Han and Y. Zhao, “A bi-metric autoscaling approach for n-tier web applications on Kubernetes,”
In Frontiers of Computer Science, pp. 1–12, 2022.

[45] M. Goudarzi, M.S. Palaniswami and R. Buyya, “A distributed deep reinforcement learning technique for
application placement in edge and fog computing environments,” In IEEE Transactions on Mobile
Computing, pp. 2491-2505, 2021.

[46] Y. Chen, “Reinforcement Learning Meets Wireless Networks: A Layering Perspective,” In IEEE Internet of
Things Journal, pp. 85–111, 2021.

[47] A. Kaloxyos, A. Gravras, D. Camps Mur, M. Ghoraishi, "AI and ML – Enablers for Beyond 5G
Networks,” In https://zenodo.org/records/4299895.

[48] Z. Zhang, T. Wang, A. Li and W. Zhang, “Adaptive auto-scaling of delay-sensitive serverless services with
reinforcement learning,” In 46th IEEE Annual Computers, Software, and Applications Conference
(COMPSAC), pp. 866–871, 2022.

[49] P. Benedetti, M. Femminella, G. Reali and K. Steenhaut, “Reinforcement learning applicability for
resource-based auto-scaling in serverless edge applications,” In IEEE International Conference on
Pervasive Computing and Communications Workshops and other Affiliated Events, pp. 674–679, 2022.

[50] G. Somma, C. Ayimba, P. Casari, S. P. Romano and V. Mancuso, “When less is more: Core-restricted
container provisioning for serverless computing,” In IEEE Conference on Computer Communications
Workshops, pp. 1153–1159, 2020.

[51] S. Agarwal, M. A. Rodriguez and R. Buyya, “A reinforcement learning approach to reduce serverless
function cold start frequency,” In 21st ACM International Symposium on Cluster, Cloud and Internet
Computing, pp. 797–803, 2021.

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 83

[52] A. Zafeiropoulos, E. Fotopoulou, N. Filinis and S. Papavassiliou, “Reinforcement learning-assisted
autoscaling mechanisms for serverless computing platforms,” In Simulation Modelling Practice and
Theory, vol. 116, 2022.

[53] P. Dai, K. Hu, X. Wu, H. Xing and Z. Yu, “Asynchronous Deep Reinforcement Learning for Data-Driven
Task Offloading in MEC Empowered Vehicular Networks,” In IEEE Conference on Computer
Communications, pp. 1-10, 2021.

[54] X. Chen, “Optimized Computation Offloading Performance in Virtual Edge Computing Systems Via Deep
Reinforcement Learning,” In IEEE Internet of Things Journal, vol.6, no.3, pp. 4005–4018, Oct. 2018.

[55] Z. Ning, “When Deep Reinforcement Learning Meets 5G-Enabled Vehicular Networks: A Distributed
Offloading Framework for Traffic Big Data,” In IEEE Transactions on Industrial Informatics, vol.16, no. 2,
pp. 1352–1361, 2020.

[56] KH. Liu and W. Liao, “Intelligent Offloading for Multi-Access Edge Computing: A New Actor-Critic
Approach,” In IEEE International Conference on Communications (ICC), pp. 1–6, 2020.

[57] X. Chen, C. Wu, Z. Liu, N. Zhang and Y. Ji, “Computation Offloading in Beyond 5G Networks: A Distributed
Learning Framework and Applications,” In IEEE Wireless Communications, vol. 28, no. 2, pp. 56-62, Apr.
2021.

[58] J. Ren, “Federated Learning-Based Computation Offloading Optimization in Edge Computing-Supported
Internet of Things,” In IEEE Access 7, pp. 69194–69201, 2019.

[59] N. Shan, X. Cui and Z. Gao, “DRL + FL”: An intelligent resource allocation model based on deep
reinforcement learning for Mobile Edge Computing,” In Computer Communications 160, pp. 14–24,
2020.

[60] 3GPP, “3rd Generation Partnership Project,” Technical Specification Group Services and System Aspects,
Service requirements for video, imaging and audio for professional applications (VIAPA), 2021, 3GPP TS
22.263 V17.4.0 (2021-06).

[61] 3GPP, “3rd Generation Partnership Project,” Technical Specification Group Services and System Aspects,
Service requirements for cyber-physical control applications in vertical domains, 2023, 3GPP TS 22.104
V19.1.0 (2023-09).

[62] D.J. Kerbyson, A. Hoisie, S. Pakin, F. Petrini and H.J. Wasserman, “A Performance Evaluation of an Alpha
EV7 Processing Node,” In The International Journal of High Performance Computing Applications, pp.
199-209, 2004.

[63] T. Haarnoj, “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor,” In ICML, 2018.

[64] L. A. Garrido, K. Ramantas, A. Dalgkitsis, A. Ksentini and C. Verikoukis, “Admission Control with Resource
Efficiency Using Reinforcement Learning in Beyond-5G Networks” In 34th IEEE Annual International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1-6, 2023.

[65] Python, “https://www.python.org/,”. Online: accessed 31 March 2024.
[66] Tensorflow, “https://www.tensorflow.org/,”. Online: accessed 31 March 2024.
[67] Google cluster-usage traces v3, “https://github.com/google/clusterdata/

blob/master/ClusterData2019.md,”. Online: accessed 31 March 2024.
[68] W.A. Hanafy, “CarbonScaler: Leveraging Cloud Workload Elasticity for Optimizing Carbon-Efficiency,” In

ACM on Measurement and Analysis of Computing Systems, pp. 1-28, 2023.
[69] N. Gholipour, E. Arianyan and R. Buyya, “A novel energy-aware resource management technique using

joint VM and container consolidation approach for green computing in cloud data centers,” In Simulation
Modelling Practice and Theory, 2020.

[70] M. Awad, N. Kara and C. Edstrom, “SLO-aware dynamic self-adaptation of resources,” In Future
Generation Computer Systems, pp. 266-280, 2022.

https://www.python.org/
https://www.tensorflow.org/
https://github.com/google/clusterdata/

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 84

[71] G. Nieto, I. de la Iglesia, U. López-Novoa and C. Perfecto, “Deep Reinforcement Learning-based Task
Offloading in MEC for energy and resource-constrained devices,” In IEEE International Mediterranean
Conference on Communications and Networking (MeditCom), pp. 127-132, 2023.

[72] Y. Xiao, Y. Song and J. Liu, “Towards Energy Efficient Resource Allocation: When Green Mobile Edge
Computing Meets Multi-Agent Deep Reinforcement Learning,”. In IEEE International Conference on
Communications, pp. 4056-4061, 2022.

[73] M. Qin, L. Chen, N. Zhao, Y. Chen, F. R. Yu and G. Wei, “Power-Constrained Edge Computing with
Maximum Processing Capacity for IoT Networks,” In IEEE Internet of Things Journal, vol. 6, no. 3, pp.
4330-4343, Jun. 2019.

[74] M. Song, Y. Lee and K. Kim, “Reward-Oriented Task Offloading Under Limited Edge Server Power for
Multiaccess Edge Computing,” In IEEE Internet of Things Journal, vol. 8, no. 17, pp. 13425-13438, Sep.
2021.

[75] K. Phemius and M. Bouet, “Implementing OpenFlow-based resilient network services,” In IEEE 1st
International Conference on Cloud Networking (CLOUDNET).

[76] A. Fressancourt and M. Gagnaire, “A SDN-based network architecture for cloud resiliency,” In 12th
Annual IEEE Consumer Communications and Networking Conference (CCNC).

[77] E. Mora-Huiracocha, “Implementation of a SD-WAN for the interconnection of two software defined
data centers," In IEEE Colombian Conference on Communications and Computing (COLCOM).

[78] J. Sushant., “B4: Experience with a globally-deployed software defined WAN,” In ACM SIGCOMM
Computer Communication Review 43.4 (2013): 3-14.

[79] H. Chi-Yao, “B4 and after: managing hierarchy, partitioning, and asymmetry for availability and scale in
google's software-defined WAN,” In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication.

[80] F. Bannour, S. Souihi and A. Mellouk, “Distributed SDN control: Survey, taxonomy, and challenges,” In
IEEE Communications Surveys & Tutorials 20.1 (2017): 333-354.

[81] H. Chi-Yao, “Achieving high utilization with software-driven WAN,” In Proceedings of the ACM SIGCOMM
2013 Conference.

[82] T. Sebastian, “SD-WAN: an open-source implementation for enterprise networking services,” In 22nd
International Conference on Transparent Optical Networks (ICTON). IEEE, 2020.

[83] J. Medved, “Opendaylight: Towards a model-driven sdn controller architecture,” In Proceeding of IEEE
international symposium on a world of wireless, mobile and multimedia networks 2014.

[84] Open vSwitch, “https://www.openvswitch.org,” (2024, January 21)
[85] VyOS, “Universal Open Source Router,”. https://vyos.io. (2024, December 2).
[86] Open Source SD-WAN and SASE, “https://flexiwan.com” (2023, November 14).
[87] S. Carmine, “EveryWAN-an open source SD-WAN solution,” In 2021 International Conference on

Electrical, Computer, Communications and Mechatronics Engineering (ICECCME).
[88] FRRouting Project, “https://frrouting.org” (2023, December 19).
[89] VPP Technology, “https://fd.io/technology,” (2023, December 19).
[90] Pyroute2, “https://pypi.org/project/pyroute,” (2023, December 12).
[91] M. Mahalingam, “Virtual extensible local area network (vxlan): A framework for overlaying virtualized

layer 2 networks over layer 3 networks,” No. rfc7348. 2014.
[92] F. Dino, “Generic routing encapsulation (GRE),” No. rfc2784. 2000.

https://www.openvswitch.org/
https://vyos.io/
https://flexiwan.com/
https://frrouting.org/
https://fd.io/technology
https://pypi.org/project/pyroute

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 85

10 Useful links

https://www.citrix.com/blogs/2014/05/02/netscaler-counters-grab-bag/
https://yuminlee2.medium.com/kubernetes-container-network-interface-cni-ee5b21514664
https://docs.tigera.io/calico/latest/about
https://github.com/flannel-io/flannel
https://www.solo.io/topics/cilium/
https://skupper.io/docs/overview/index.html
https://submariner.io/getting-started/architecture/
https://istio.io/latest/docs/concepts/traffic-management/
https://developer.cisco.com/docs/cloud-native-sdwan/
https://www.vmware.com/topics/glossary/content/kubernetes.html
https://submariner.io/operations/monitoring/

https://www.citrix.com/blogs/2014/05/02/netscaler-counters-grab-bag/
https://yuminlee2.medium.com/kubernetes-container-network-interface-cni-ee5b21514664
https://docs.tigera.io/calico/latest/about
https://github.com/flannel-io/flannel
https://www.solo.io/topics/cilium/
https://skupper.io/docs/overview/index.html
https://submariner.io/getting-started/architecture/
https://istio.io/latest/docs/concepts/traffic-management/
https://developer.cisco.com/docs/cloud-native-sdwan/
https://www.vmware.com/topics/glossary/content/kubernetes.html

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 86

11 Annexes
11.1 Annexe A – SD-WAN Northbound API Swagger Definition

openapi: "3.0.0"

info:

 title: "SD-WAN Service"

 description: "Northbound REST API of the SD-WAN controller"

 version: "0.1.1"

servers:

 - url: "/"

paths:

 /overlays:

 get:

 summary: "Retrieve Created Overlays"

 description: "Get details of created overlays of a given tenant ID. Can be filtered with

overlays IDs."

 parameters:

 - name: "overlaysIDs"

 in: "query"

 schema:

 type: "array"

 items:

 type: "string"

 description: "List of overlays IDs. For filtering."

 - name: "tenantid"

 in: "query"

 schema:

 type: "string"

 default: "1"

 required: true

 description: "The tenant ID"

 responses:

 200:

 description: "A list of overlays"

 content:

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/OverlayInfo'

 400:

 description: "Invalid request parameters."

 401:

 description: "Unauthorized access."

 500:

 description: "Internal server error."

 503:

 description: "Service unavailable. The server is temporarily unable to handle the request."

 post:

 summary: "Create Overlay"

 description: "Create a new SD-WAN overlay."

 requestBody:

 required: true

 content:

 application/json:

 schema:

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 87

 $ref: "#/components/schemas/OverlayConfig"

 responses:

 200:

 description: "Overlay created successfully."

 400:

 description: "Invalid request payload."

 401:

 description: "Unauthorized access."

 500:

 description: "Internal server error."

 503:

 description: "Service unavailable. The server is temporarily unable to handle the request."

 delete:

 summary: "Remove Overlay"

 description: "Delete an overlay by specifying either overlay name or overlay ID along with

tenant ID."

 requestBody:

 required: true

 content:

 application/json:

 schema:

 oneOf:

 - $ref: "#/components/schemas/OverlayReqID"

 - $ref: "#/components/schemas/OverlayReqName"

 responses:

 200:

 description: "Overlay removed successfully."

 400:

 description: "Invalid request payload."

 401:

 description: "Unauthorized access."

 500:

 description: "Internal server error."

 503:

 description: "Service unavailable. The server is temporarily unable to handle the request."

 /overlays/default:

 post:

 summary: "Create Default Overlay"

 description: "Create a default SD-WAN overlay with predefined default parameters."

 parameters:

 - name: "tenantid"

 in: "query"

 required: true

 schema:

 type: "string"

 default: "1"

 responses:

 200:

 description: "Default overlay created successfully."

 208:

 description: "Default overlay already exists."

 400:

 description: "Invalid request payload."

 401:

 description: "Unauthorized access."

 500:

 description: "Internal server error."

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 88

 503:

 description: "Service unavailable. The server is temporarily unable to handle the request."

 /enableServicePublicAccess:

 post:

 summary: "Enable service public access"

 description: "Enable public access to a specific service."

 requestBody:

 required: true

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/ServicePublicAccessParams'

 responses:

 200:

 description: Success

 content:

 application/json:

 schema:

 type: object

 properties:

 code:

 type: integer

 reason:

 type: string

 public_ip:

 type: string

 public_port:

 type: integer

 400:

 description: Bad Request

 content:

 application/json:

 schema:

 type: object

 properties:

 code:

 type: integer

 reason:

 type: string

 500:

 description: Internal Server Error

 content:

 application/json:

 schema:

 type: object

 properties:

 code:

 type: integer

 reason:

 type: string

 /disableServicePublicAccess:

 post:

 summary: "Disable service public access"

 description: "Disable public access to a specific service."

 requestBody:

 required: true

 content:

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 89

 application/json:

 schema:

 $ref: '#/components/schemas/ServicePublicAccessParams'

 responses:

 200:

 description: Success

 content:

 application/json:

 schema:

 type: object

 properties:

 code:

 type: integer

 reason:

 type: string

 400:

 description: Bad Request

 content:

 application/json:

 schema:

 type: object

 properties:

 code:

 type: integer

 reason:

 type: string

 500:

 description: Internal Server Error

 content:

 application/json:

 schema:

 type: object

 properties:

 code:

 type: integer

 reason:

 type: string

 /enableServiceInterClusterAccess:

 post:

 summary: "Enable service inter-cluster access"

 description: "Enable inter-cluster access for a specific overlay."

 requestBody:

 required: true

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/ServiceInterClusterAccessParams'

 responses:

 200:

 description: Success

 content:

 application/json:

 schema:

 type: object

 properties:

 code:

 type: integer

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 90

 reason:

 type: string

 400:

 description: Bad Request

 content:

 application/json:

 schema:

 type: object

 properties:

 code:

 type: integer

 reason:

 type: string

 500:

 description: Internal Server Error

 content:

 application/json:

 schema:

 type: object

 properties:

 code:

 type: integer

 reason:

 type: string

 /disableServiceInterClusterAccess:

 post:

 summary: "Disable service inter-cluster access"

 description: "Disable inter-cluster access for a specific overlay."

 requestBody:

 required: true

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/ServiceInterClusterAccessParams'

 responses:

 200:

 description: Success

 content:

 application/json:

 schema:

 type: object

 properties:

 code:

 type: integer

 reason:

 type: string

 404:

 description: Not Found

 content:

 application/json:

 schema:

 type: object

 properties:

 code:

 type: integer

 reason:

 type: string

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 91

 500:

 description: Internal Server Error

 content:

 application/json:

 schema:

 type: object

 properties:

 code:

 type: integer

 reason:

 type: string

 /edges/configurations:

 get:

 summary: "Retrieve Edges Interfaces Configurations."

 description: "Fetch the configurations of registered SD-WAN edge devices interfaces. Can be

filtered based on device IDs."

 parameters:

 - name: "devicesids"

 in: "query"

 schema:

 type: "array"

 items:

 type: "string"

 description: "List of devices IDs."

 - name: "tenantid"

 in: "query"

 schema:

 type: "string"

 default: "1"

 required: true

 description: "The tenant ID."

 responses:

 200:

 description: "A list of All edges configurations."

 content:

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/DeviceConfigInfo'

 400:

 description: "Invalid request parameters."

 401:

 description: "Unauthorized access."

 500:

 description: "Internal server error."

 503:

 description: "Service unavailable. The server is temporarily unable to handle the request."

 /edges/interfacesconfiguration:

 post:

 summary: "Configure Edges Interfaces"

 description: "Set up interfaces for SD-WAN edge devices. Configuring the Edges Interfaces is

required to init the SD-WAN controller. This enables the edges. Its for specifying underlay wan

ids, and subnets that are behind each edge (local subnetworks)."

 requestBody:

 required: true

 content:

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 92

 application/json:

 schema:

 $ref: "#/components/schemas/DevicesConfigs"

 responses:

 200:

 description: "Edge interfaces configured successfully."

 400:

 description: "Invalid request payload."

 401:

 description: "Unauthorized access."

 500:

 description: "Internal server error."

 503:

 description: "Service unavailable. The server is temporarily unable to handle the request."

 /appIdentifiers:

 get:

 summary: "Retrieve Application Identifiers"

 description: "Get details of application identifiers."

 parameters:

 - name: "tenantid"

 in: "query"

 required: true

 schema:

 type: "string"

 default: "1"

 description: "Tenant ID"

 - name: "appsIdentifIDs"

 in: "query"

 schema:

 type: "array"

 items:

 type: "string"

 description: "List of applications identifiers IDs"

 responses:

 200:

 description: "A list of application identifiers."

 content:

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/AppIdentifierInfo'

 400:

 description: "Invalid request parameters."

 401:

 description: "Unauthorized access."

 500:

 description: "Internal server error."

 503:

 description: "Service unavailable. The server is temporarily unable to handle the request."

 post:

 summary: "Create Application Identifier"

 description: "Create a new application identifier."

 requestBody:

 required: true

 content:

 application/json:

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 93

 schema:

 $ref: "#/components/schemas/ApplicationIdentifier"

 responses:

 200:

 description: "Application identifier created successfully."

 400:

 description: "Invalid request payload."

 401:

 description: "Unauthorized access."

 500:

 description: "Internal server error."

 503:

 description: "Service unavailable. The server is temporarily unable to handle the request."

 delete:

 summary: "Remove Application Identifier"

 description: "Delete an application identifier by specifying either application identifier

name or ID along with tenant ID."

 requestBody:

 required: true

 content:

 application/json:

 schema:

 oneOf:

 - $ref: "#/components/schemas/AppIdentifReqID"

 - $ref: "#/components/schemas/AppIdentifReqName"

 responses:

 200:

 description: "Application identifier removed successfully."

 400:

 description: "Invalid request payload."

 401:

 description: "Unauthorized access."

 500:

 description: "Internal server error."

 503:

 description: "Service unavailable. The server is temporarily unable to handle the request."

 /monitoring/overlay/latency/start:

 post:

 summary: "Start Overlay Tunnels Monitoring"

 description: "Initiate the monitoring of all overlay tunnels' latency."

 parameters:

 - name: "tenantid"

 in: "query"

 required: true

 schema:

 type: "string"

 default: "1"

 description: "Tenant ID"

 responses:

 200:

 description: "Overlay tunnels monitoring started successfully."

 400:

 description: "Invalid request parameters."

 401:

 description: "Unauthorized access."

 500:

 description: "Internal server error."

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 94

 503:

 description: "Service unavailable. The server is temporarily unable to handle the request."

 /monitoring/overlay/latency/stop:

 post:

 summary: "Stop Overlay Tunnels Monitoring"

 description: "Stop the monitoring of all overlay tunnels' latency."

 parameters:

 - name: "tenantid"

 in: "header"

 required: true

 schema:

 type: "string"

 default: "1"

 description: "Tenant ID"

 responses:

 200:

 description: "Overlay tunnels monitoring stopped successfully."

 400:

 description: "Invalid request parameters."

 401:

 description: "Unauthorized access."

 500:

 description: "Internal server error."

 503:

 description: "Service unavailable. The server is temporarily unable to handle the request."

 /monitoring/overlay/latency:

 get:

 summary: "Retrieve Overlays Tunnels latency"

 description: "Get latency for all overlay tunnels."

 parameters:

 - name: "tenantid"

 in: "query"

 required: true

 schema:

 type: "string"

 default: "1"

 description: "Tenant ID"

 responses:

 200:

 description: "A list of overlays tunnels latency data."

 content:

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/OverlayLatency'

 400:

 description: "Invalid request parameters."

 401:

 description: "Unauthorized access."

 500:

 description: "Internal server error."

 503:

 description: "Service unavailable. The server is temporarily unable to handle the request."

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 95

components:

 schemas:

 OverlayLatency:

 type: object

 properties:

 overlay_name:

 type: string

 description: "Name of the overlay."

 overlayid:

 type: string

 description: "Unique identifier for the overlay."

 tunnels:

 type: array

 description: "List of tunnels associated with the overlay."

 items:

 $ref: '#/components/schemas/TunnelLatency'

 TunnelLatency:

 type: object

 properties:

 tunnel_key:

 type: string

 description: "Unique key for the tunnel."

 tunnel_interface_name:

 type: string

 description: "Name of the Overlay tunnel interface."

 edge:

 type: string

 description: "Edge That initiated the ping."

 latency_history:

 type: array

 description: "History of latency measurements for the tunnel."

 items:

 type: number

 format: float

 AppIdentifierInfo:

 type: object

 properties:

 device_name:

 type: string

 description: "Name of the edge device in which the rules will be matched."

 tenantid:

 type: string

 description: "Tenant ID."

 id:

 type: string

 description: "Unique identifier for the application Identifier."

 application_name:

 type: string

 description: "Name of the application."

 description:

 type: string

 category:

 type: string

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 96

 description: "Category of the application (e.g., data-transfer)."

 service_class:

 type: string

 description: "Service class of the application (e.g., high-throughput)."

 importance:

 type: string

 description: "Importance level of the application."

 enum: [LOW, MEDIUM, HIGH]

 overlay_paths:

 type: object

 description: "Overlay paths configuration for the application."

 properties:

 paths_mode:

 type: string

 description: "Mode of the paths (e.g., static)."

 enum: [static, dynamic]

 paths:

 type: array

 description: "List of overlay paths."

 items:

 type: string

 policy:

 type: string

 description: "Policy for dynamic overlay paths selection."

 delay_threshold:

 type: number

 description: "Delay threshold."

 rules:

 $ref: "#/components/schemas/APPIdentifRule"

 matches:

 $ref: "#/components/schemas/APPIdentifMatch"

 OverlayInfo:

 type: object

 properties:

 id:

 type: string

 description: "Unique identifier of the overlay."

 name:

 type: string

 description: "Overlay name."

 type:

 type: string

 enum: [IPv4Overlay, IPv6Overlay]

 description: "Type of the overlay."

 underlay_wan_id:

 type: string

 description: "ID of the underlay WAN associated with the overlay."

 mode:

 type: string

 enum: [VXLAN]

 description: "Overlay Tunnel Mode (e.g., VXLAN)."

 tenantid:

 type: string

 description: "Tenant ID."

 interfaces:

 type: array

 description: "List of interfaces associated with the overlay."

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 97

 items:

 $ref: '#/components/schemas/OverlayInterface'

 OverlayInterface:

 type: object

 properties:

 device_name:

 type: string

 description: "Device Name."

 deviceid:

 type: string

 interface_name:

 type: string

 description: "Name of the LAN interface associated with Overlay Slice."

 DeviceConfigInfo:

 type: object

 properties:

 device_id:

 type: string

 description: "Unique identifier for the edge."

 name:

 type: string

 description: "Name of the edge device."

 description:

 type: string

 mgmtip:

 type: string

 description: "The IP address used for SBI gRPC Server."

 connected:

 type: boolean

 description: "Indicates if the device is registered with the SD-WAN controller."

 configured:

 type: boolean

 description: "Indicates if the device is configured."

 enabled:

 type: boolean

 description: "Indicates if the device is enabled."

 default_underlay_id:

 type: string

 description: "default WAN Id to be used in creating default overlay."

 interfaces:

 type: array

 items:

 $ref: '#/components/schemas/DeviceInterfConfigInfo'

 description: "List of network interfaces for the device."

 loopbackip:

 type: string

 description: "Loopback IP address of the device."

 loopbacknet:

 type: string

 description: "Loopback network of the device."

 managementip:

 type: string

 description: "The IP address used for SBI gRPC Server."

 DeviceInterfConfigInfo:

 type: object

 properties:

 name:

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 98

 type: string

 description: "Name of the network interface."

 mac_addr:

 type: string

 description: "MAC address of the network interface."

 ipv4_addrs:

 type: array

 items:

 type: string

 description: "List of IPv4 addresses assigned to the network interface."

 ipv6_addrs:

 type: array

 items:

 type: string

 description: "List of IPv6 addresses assigned to the network interface."

 ext_ipv4_addrs:

 type: array

 description: "List of external IPv4 addresses assigned to the network interface."

 items:

 type: string

 ext_ipv6_addrs:

 type: array

 description: "List of external IPv6 addresses assigned to the network interface."

 items:

 type: string

 ipv4_subnets:

 type: array

 description: "List of IPv4 subnets behind this interface. (If type is lan)."

 items:

 $ref: '#/components/schemas/Ipv4Subnet'

 ipv6_subnets:

 type: array

 description: "List of IPv6 subnets behind this interface. (If type is lan)."

 items:

 $ref: '#/components/schemas/Ipv6Subnet'

 type:

 type: string

 description: "Type of the network interface."

 enum: [lan, wan, unknown]

 underlay_wan_id:

 type: string

 description: "ID of the underlay WAN associated to this network interface."

 DevicesConfigs:

 type: object

 properties:

 tenantid:

 type: string

 description: "Tenant ID."

 example: "1"

 default_underlay_id:

 type: string

 description: "default WAN Id to be used in creating default overlay."

 example: "WAN-1"

 devices_configs:

 type: array

 description: "The list of devices configurations."

 items:

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 99

 $ref: "#/components/schemas/DeviceInterfacesConfig"

 example:

 - device_name: "ewED1"

 interfaces:

 - name: "ew_if1_wan2"

 type: "wan"

 underlay_wan_id: "WAN-1"

 - name: "ew_if2_sboai"

 type: "wan"

 underlay_wan_id: "WAN-2"

 - name: "el_if1_priv_net"

 type: "lan"

 ipv4_subnets:

 - gateway: ""

 subnet: "192.168.50.0/24"

 - gateway: "192.168.50.9"

 subnet: "10.168.55.0/24"

 - device_name: "ewED2"

 interfaces:

 - name: "ew_if1_wan2"

 type: "wan"

 underlay_wan_id: "WAN-1"

 - name: "ew_if2_sboai"

 type: "wan"

 underlay_wan_id: "WAN-2"

 - name: "el_if1_priv_net"

 type: "lan"

 ipv4_subnets:

 - gateway: ""

 subnet: "192.168.70.0/24"

 - gateway: "192.168.70.9"

 subnet: "10.168.77.0/24"

 DeviceInterfacesConfig:

 type: object

 properties:

 device_name:

 type: string

 description: "Device name to configure its interfaces."

 interfaces:

 type: array

 items:

 $ref: "#/components/schemas/InterfaceConfig"

 InterfaceConfig:

 type: object

 properties:

 name:

 type: string

 description: "Name of the interface."

 type:

 type: string

 description: "Type of interface (e.g., wan, lan)."

 enum: [lan, wan]

 underlay_wan_id:

 type: string

 description: "ID of the underlay WAN."

 ipv4_addrs:

 type: array

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 100

 items:

 type: string

 description: "List of IPv4 addresses."

 ipv6_addrs:

 type: array

 items:

 type: string

 description: "List of IPv6 addresses."

 ipv4_subnets:

 type: array

 items:

 $ref: "#/components/schemas/Ipv4Subnet"

 description: "List of IPv4 subnets."

 ipv6_subnets:

 type: array

 items:

 $ref: "#/components/schemas/Ipv6Subnet"

 description: "List of IPv6 subnets."

 ext_ipv4_addrs:

 type: array

 items:

 type: string

 description: "List of external IPv4 addresses."

 ext_ipv6_addrs:

 type: array

 items:

 type: string

 description: "List of external IPv6 addresses."

 Ipv4Subnet:

 type: object

 properties:

 subnet:

 type: string

 description: "IPv4 subnet."

 gateway:

 type: string

 description: "Gateway address for the IPv4 subnet."

 description: "IPv4 subnet, and the gateway to this subnet."

 Ipv6Subnet:

 type: object

 properties:

 subnet:

 type: string

 description: "IPv6 subnet."

 gateway:

 type: string

 description: "Gateway address for the IPv6 subnet."

 description: "IPv6 subnet, and the gateway to this subnet."

 OverlayConfig:

 type: object

 properties:

 tenantid:

 type: string

 description: "The ID of the tenant."

 example: "1"

 overlay_name:

 type: string

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 101

 description: "The name of the overlay."

 example: "Overlay-100"

 overlay_type:

 type: string

 description: "The type of the overlay."

 enum: [IPv4Overlay, IPv6Overlay]

 example: "IPv4Overlay"

 overlay_tunnel_mode:

 type: string

 description: "The tunneling mode of the overlay."

 enum: [VXLAN]

 example: "VXLAN"

 overlay_slices:

 type: array

 description: "The slices of the overlay. i.e. the lan interfaces behind the edge that will

be assigned to the overlay."

 items:

 $ref: "#/components/schemas/OverlaySlice"

 example:

 - device_name: "ewED1"

 device_LAN_interface: "el_if1_priv_net"

 undelay_WAN_id: "WAN-1"

 - device_name: "ewED2"

 device_LAN_interface: "el_if1_priv_net"

 undelay_WAN_id: "WAN-1"

 required: ["tenantid", "overlay_name", "overlay_type", "overlay_tunnel_mode",

"overlay_slices"]

 OverlaySlice:

 type: object

 properties:

 device_name:

 type: string

 description: "Edge device name associated with the slice."

 device_LAN_interface:

 type: string

 description: "The LAN interface of the edge device to be assigned to the slice."

 undelay_WAN_id:

 type: string

 description: "The ID of the underlay WAN interface. The overlay will be created over this

underlay."

 required: ["device_name", "device_LAN_interface", "undelay_WAN_id"]

 ApplicationIdentifier:

 type: object

 properties:

 device_name:

 type: string

 description: "Name of the device."

 example: "ewED1"

 tenantid:

 type: string

 description: "Tenant ID."

 example: "1"

 application_name:

 type: string

 description: "Name of the application."

 example: "IIoT-App-1"

 description:

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 102

 type: string

 description: "Description of the application."

 example: "Internet of Things application"

 category:

 type: string

 description: "Category of the application."

 example: "data-transfer"

 service_class:

 type: string

 description: "Service class of the application."

 example: "high-throughput"

 importance:

 type: string

 description: "Importance of the application."

 enum: [LOW, MEDIUM, HIGH]

 rules:

 $ref: "#/components/schemas/APPIdentifRule"

 overlays:

 $ref: "#/components/schemas/AppIdentifOverlays"

 match:

 $ref: "#/components/schemas/APPIdentifMatch"

 required:

 - device_name

 - tenantid

 - application_name

 AppIdentifOverlays:

 type: object

 properties:

 mode:

 type: string

 description: "Mode of Overlay path selection (static/dynamic)."

 enum: [static, dynamic]

 overlay_paths:

 type: array

 description: "List of static paths."

 items:

 type: string

 example: ["Overlay-100"]

 policy:

 type: string

 description: "Policy for dynamic paths."

 delay_threshold:

 type: number

 description: "Delay threshold for dynamic paths."

 APPIdentifRule:

 type: object

 minProperties: 1

 properties:

 source_ip:

 type: string

 description: "Source IP address."

 example: ""

 destination_ip:

 type: string

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 103

 description: "Destination IP address."

 example: "10.168.77.53"

 protocol:

 type: string

 description: "Protocol."

 enum: [TCP, UDP]

 example: ""

 source_port:

 type: string

 description: "Source port."

 example: ""

 destination_port:

 type: string

 description: "Destination port."

 example: ""

 APPIdentifMatch:

 type: object

 properties:

 match_name:

 type: string

 description: "Name of the match."

 match_attributes:

 type: array

 items:

 $ref: "#/components/schemas/APPIdentifMatchAttributes"

 APPIdentifMatchAttributes:

 type: object

 properties:

 attribute_name:

 type: string

 description: "Name of the attribute."

 attribute_value:

 type: string

 description: "Value of the attribute."

 OverlayReqName:

 type: object

 properties:

 tenantid:

 type: string

 default: "1"

 overlay_name:

 type: string

 example: "Overlay-100"

 OverlayReqID:

 type: object

 properties:

 tenantid:

 type: string

 default: "1"

 overlayid:

 type: string

 AppIdentifReqID:

 type: object

 properties:

 tenantid:

 type: string

 default: "1"

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 104

 app_identif_id:

 type: string

 AppIdentifReqName:

 type: object

 properties:

 tenantid:

 type: string

 default: "1"

 app_identif_name:

 type: string

 ServicePublicAccessParams:

 type: object

 properties:

 edge_name:

 type: string

 description: "Name of the edge device."

 tenantid:

 type: string

 default: "1"

 service_ip:

 type: string

 service_port:

 type: string

 service_protocol:

 type: string

 enum: [TCP, UDP]

 ServiceInterClusterAccessParams:

 type: object

 properties:

 overlay_id:

 type: string

 tenantid:

 type: string

 default: '1'

 service_ip:

 type: string

 service_port:

 type: string

 service_protocol:

 type: string

 enum: [TCP, UDP]

 required: ["overlay_id", "tenantid"]

D.4.1 Initial report on mechanisms that enable green-oriented zero touch management of CECC resources

© AC3 2023 Page | 105

	1 Executive Summary
	2 Introduction
	2.1 Scope
	2.2 Target Audience
	2.3 Mapping AC3 Outputs
	2.4 Deliverable Overview and Report Structure

	3 AC3 Architecture and WP4 Components
	4 Resource Discovery and Monitoring
	4.1 Overview of the Monitoring System for the CECCM
	4.2 Unified Monitoring Data Model and Monitoring Data Collection
	4.2.1 Monitoring Data
	4.2.2 Enhanced Resource Profile Schema
	4.2.2.1 Schema Overview

	4.2.3 Metrics for Monitoring Data Processing Components
	4.2.3.1 Operational Metrics
	4.2.3.2 Application Metrics

	4.2.4 Data Collection
	4.2.5 Data Collection Interfaces for Networking

	4.3 Network Monitoring
	4.3.1 State-of-the-Art on Data Collection Interfaces for Computing
	4.3.1.1 Data Model using Computing Resources
	4.3.1.2 Data Model with Information on the Energy Type

	4.4 Resource Discovery, Unified Resource Discovery Communication
	4.4.1 Resource Discovery

	5 AI/ML Models for Prediction and Resource Management
	5.1 State-of-the-Art
	5.2 Data, Computing and Networking Metrics
	5.3 AI/ML to Predict Infrastructure Usage
	5.3.1 State-of-the-Art
	5.3.1.1 Beyond State-of-the-Art

	5.3.2 XAI-Enabled Fine Granular Resources Autoscaler
	5.3.2.1 Design and Specification of the Autoscaler Framework
	5.3.2.1.1 Analytical Engine (AE)

	5.3.2.2 Performance Evaluation

	5.3.3 XAI for Prediciton of Infrastructure Usage
	5.3.3.1 Gating in TFT
	5.3.3.2 Variable Selection Networks in TFT
	5.3.3.3 Static Covariate Encoding in TFT
	5.3.3.4 Interpretable Multi-Head Attention
	5.3.3.5 Infrastructure Metrics used and Latency Pattern
	5.3.3.6 Performance evaluation
	5.3.3.7 Forecasting Results
	5.3.3.8 Explainability

	5.3.4 GNN for Spatio-Temporal Prediction
	5.3.4.1 State-of-the-Art on GNN for Spatio-Temporal Prediction
	5.3.4.2 Workload Prediction for Volatile Nodes using Dynamic GNN
	5.3.4.3 Temporal Graph Construction
	5.3.4.4 Model Architecture
	5.3.4.5 Performance Evaluation
	5.3.4.5.1 Dataset
	5.3.4.5.2 Evaluation Metrics
	5.3.4.5.3 Performance Evaluaiton

	6 Decision Enforcement with Reinforcement Learning
	6.1 Reinforcement Learning for Resource Allocation
	6.1.1.1 System Model and Problem Formulation
	6.1.1.2 RL Formulation
	6.1.1.3 Performance evaluation
	6.1.2 Future Work on Reinforcement Learning for Energy-Aware Resource Allocation

	7 Network Programmability
	7.1 State-of-the Art on Network Programmability
	7.1.1 Software Defined Networking
	7.1.2 Kubernetes-based Network Orchestration
	7.1.2.1 CNI-Agnostic Solutions

	7.2 Proposed Hybrid Architecture for Multi-layer Network Programmability
	7.2.1 SD-WAN
	7.2.1.1 SD-WAN Overall Architecture
	7.2.1.2 Architecture Instantiation
	7.2.1.3 Performance Evaluation
	7.2.1.3.1 Overlay Creation Time

	7.2.2 Kubernetes-based Network Orchestration
	7.2.2.1 AC3 Network Management Operator
	7.2.2.2 Custom Resource Definitions (CRD)
	7.2.2.3 AC3 Network Controller
	7.2.2.4 Proactive Network Configuration mechanisms
	7.2.2.4.1 Skupper Overview
	7.2.2.4.2 Skupper Network Configuration
	7.2.2.4.3 Submariner Network Configuration

	7.2.2.5 Reactive Network Configuration Mechanisms
	7.2.2.5.1 Multi-overlay Networks
	7.2.2.5.2 Adaptive Routing Resource Allocation
	7.2.2.5.3 Service Load Balancing
	7.2.2.5.4 Rate Limiting

	7.2.2.6 Network Monitoring

	8 Conclusions
	9 References
	10 Useful links
	11 Annexes
	11.1 Annexe A – SD-WAN Northbound API Swagger Definition

