

AC3 project has received funding from European Union’s Horizon Europe research and innovation
programme under Grand Agreement No 101093129.

D2.3 Report on technological tools for CECC

Document Summary Information

Project Identifier HORIZON-CL4-2022-DATA-01. Project 101093129

Project name Agile and Cognitive Cloud-edge Continuum management

Acronym AC3

Start Date January 1, 2023 End Date December 31, 2025

Project URL www.ac3-project.eu

Deliverable D2.3. Report on technological tools for CECC

Work Package WP2

Contractual due
date

M12: 31st December
2023

Actual submission
date

Type R- Document, report Dissemination Level PU – Public

Lead Beneficiary EUR

Responsible Author Mohamed Mekki (EUR)

Contributors Mohamed Mekki (EUR), Sofiane Messaoudi (EUR), Ayoub Mokhtari (EUR), Adlen
Ksentini (EUR), Souvik Sengupta (ION), Dimitrios Amaxilatis (SPA), Nikolaos Tsironis
(SPA), Ioannis Zenginis (IQU), Josh Salomon (RHT), Ben Capper (RHT), Abdelhak
KADOUMA (FIN), Wassim KRIBAA (FIN), Ibrahim AFOLABI (FIN), John Beredimas
(CSG), Athanasios Kordelas (CSG), Elias Dritsas (ISI/ATH), I.Lakoumentas (ISI/ATH),
D.Selis (ISI/ATH) and P.Marantis (ISI/ATH)

Peer reviewer(s) Gleibis Camejo Castillo (ARS) and Amadou Ba (IBM)

http://www.ac3-project.eu/

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 2

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 3

Revision history (including peer reviewing & quality control)

Version Issue Date
%

Complete
Changes Contributor(s)

V1.0 13/09/2023 5% Initial Deliverable Structure (ToC) Mohamed Mekki (EUR)

V1.1 17/11/2023 70% All tools description filled Sofiane Messaoudi (EUR),
Ayoub Mokhtari (EUR), Adlen
Ksentini (EUR), Souvik Sengupta
(ION), Dimitrios Amaxilatis
(SPA), Nikolaos Tsironis (SPA),
Ioannis Zenginis (IQU), Josh
Salomon (RHT), Ben Capper
(RHT), Abdelhak KADOUMA
(FIN), Wassim KRIBAA (FIN),
Ibrahim AFOLABI (FIN), John
Beredimas (CSG), Athanasios
Kordelas (CSG), Mohamed
Mekki (EUR)

V1.2 24/11/2023 85% Gap analysis Mohamed Mekki (EUR)

V1.3 29/11/2023 90% Prepared the initial full draft Mohamed Mekki (EUR)

V1.4 05/12/2023 95% Received internal reviewers’
feedback

Gleibis Camejo Castillo (ARS),

Amadou Ba (IBM)

V1.5 11/12/2023 99% Addressing the review comments

Souvik Sengupta (ION),
Dimitrios Amaxilatis (SPA),
Nikolaos Tsironis (SPA), Ioannis
Zenginis (IQU), Josh Salomon
(RHT), Ben Capper (RHT),
Abdelhak KADOUMA (FIN),
Wassim KRIBAA (FIN), Ibrahim
AFOLABI (FIN), John Beredimas
(CSG), Athanasios Kordelas
(CSG), Elias Dritsas (ISI/ATH),
I.Lakoumentas (ISI/ATH), D.Selis
(ISI/ATH) and P.Marantis
(ISI/ATH), Mohamed Mekki
(EUR)

V1.6 14/12/2023 100% Final review Mohamed Mekki (EUR), Adlen
Ksentini (EUR), Christos
Verikoukis (ATH/ISI)

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 4

Disclaimer

The content of this document reflects only the author’s view. Neither the European Commission nor the
HaDEA are responsible for any use that may be made of the information it contains.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the AC3 consortium make no warranty of any kind with regard to this material including, but
not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the AC3 consortium nor any of its members, their officers, employees or agents shall be responsible
or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the AC3 Consortium nor any of its members,
their officers, employees or agents shall be liable for any direct or indirect or consequential loss or damage
caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© AC3 Consortium. This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of others has been made
through appropriate citation, quotation or both. Reproduction is authorised provided the source is
acknowledged.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 5

Table of Contents

1. Executive Summary ... 10
2. Introduction ... 12

2.1. Mapping AC3 Outputs .. 12
2.2. Deliverable Overview and Report Structure ... 13

3. Overall Architecture of the AC3 CECCM Framework .. 14
4. User Interaction ... 16

4.1. Human Machine Interface ... 16
4.1.1. EURECOM’s Web portal ... 16
4.1.2. MAESTRO Service Orchestrator – Front-end user/developer interface 18

4.2. Application / Ontology Descriptor ... 19
4.2.1. Ontology and applications profiles Description .. 19
4.2.2. EURECOM’s Network Service Descriptor... 20
4.2.3. Languages to describe applications ... 21

4.3. Service and data Catalogue ... 22
4.3.1. Service Catalogue ... 22
4.3.2. Data Catalogue .. 22

5. Infrastructure and Resources Management ... 26
5.1. Application Life Cycle Management .. 26

5.1.1. Orchestration ... 26
5.1.2. Monitoring ... 28

5.2. Data Management ... 29
5.2.1. Data Spaces.. 29
5.2.2. Trust ... 33
5.2.3. Cloud IoT & Data Platforms ... 35
5.2.5. Edge Operating Systems and Data Agents .. 37
5.2.6. Message Brokers.. 38
5.2.7. State Manager ... 39

5.5. Local Management System ... 41
5.5.1. Local Management System for Computing ... 41
5.5.2. Local Management System for Networking .. 49

6. Gap Analysis... 60
7. Conclusion ... 64
References ... 65

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 6

List of Figures

Figure 1. High-level architecture of AC3 and corresponding sections in the deliverable 14

Figure 2. EURECOM's Web portal components ... 16

Figure 3. Interaction between different IDS components for creating Data Spaces 23

Figure 4. A conceptual diagram of the creation of Data Spaces ... 25

Figure 5. Cloud-native Lightweight Slice Orchestration Framework ... 26

Figure 6. MAESTRO service orchestration framework .. 27

Figure 7. EURECOM's Monitoring System ... 28

Figure 8. IDSA Proposed Reference Architecture Model .. 30

Figure 9. Architectural diagram of IDS Connector ... 31

Figure 10. Data Space ecosystem proposed by Gaia-X ... 32

Figure 11. Interaction between IDS Connector and Identity Components ... 34

Figure 12. RL scheme: An agent interacts with the environment making smart actions that maximize reward
signals [34] ... 39

Figure 13. Kubernetes cluster architecture [37].. 42

Figure 14. The difference between K3s server and K3s agent nodes [38] .. 44

Figure 15. OpenShift vs HyperShift Architecture .. 46

Figure 16. Virtual Application Networks implementation with Skupper [45] ... 50

Figure 17. Submariner Architecture .. 51

Figure 18. Overview of an Application Delivery Controller ... 51

Figure 19. Kubernetes Ingress Overview ... 54

Figure 20. Kubernetes north-south traffic distribution with NetScaler CPX ... 56

Figure 21. Kubernetes East-West traffic distribution with NetScaler CPX .. 56

Figure 22. Canary Deployment of microservices in Kubernetes with NetScaler, Kayent and Spinnaker 57

Figure 23. Citrix Observability Exporter architecture .. 57

Figure 24. NetScaler App Delivery Management Service Graph ... 58

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 7

List of Tables

Table 1: Adherence to AC3 GA Deliverable & Tasks Descriptions ... 13

Table 2. Number of SOTA RL algorithms implemented in each RL library [35]. .. 40

Table 3. Summary of the technological tools .. 60

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 8

Glossary of terms and abbreviations used

Abbreviation / Term Description

AAS Authentication & Authorization Service

AC3 Agile and Cognitive Cloud edge Continuum management

AppD Application Descriptor

CA Certificate Authority

CECC Cloud Edge Computing Continuum

CECCM Cloud Edge Computing Continuum Manager

CIK Connector Instance Key

CIR Container Image Registry

CLiSO Cloud-native Lightweight Network Slice Orchestration

CNF Container Network Function

CRUD Create, Read, Update and Delete

DAPS Dynamic Attribute Provisioning Service

DATs Dynamic Attribute Tokens

DID Distributed Identifier

DMZ Demilitarized Zone

EDC Eclipse Dataspace Components

GXFS Gaia-X Federation Services

IaaS Infrastructure as a Service

IDS International Data Spaces

IDSA International Data Spaces Association

IoT Internet of Things

K8s Kubernetes

LCM Life Cycle Management

LMS Local Management Systems

MEC Multi-access Edge Computing

MOS Management and Orchestration System

NFV Network Function Virtualization

NOT Notarization Service

NST Network Slice Template

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 9

OCM Organization Credential Manager

PaaS Platform as a Service

ParIS Participant Information Service

PCM Personal Credential Manager

PKI Public Key Infrastructure

PPL Piveau Pipeline

SD-WAN Software-Defined Wide Area Network

SLA Service Level Agreement

SSI Self-Sovereign Identity

SWRL Semantic Web Rule Language

TRU Trust Services

UID Unique Identifier

WRL Web Rule Language

XFSC Eclipse Cross-Federation Services

OWL Web Ontology Language

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 10

1. Executive Summary

The document is deliverable “D2.3: Report on technological tools for CECC” of the AC3 (Agile and Cognitive
Cloud edge Continuum Management) project funded under the Horizon Europe Research and Innovation
Action programme. This deliverable is a report on the technological enablers envisioned to implement the
Cloud Edge Computing Continuum Manager (CECCM) components as well as the different Local Management
Systems (LMS) handling the Cloud Egde Computing Continuum infrastructure. Specifically, the document
surveys the existing tools and technological enablers covering all the components of the AC3 architecture
(i.e., CECCM components and LMS), such as human machine interface, service orchestrators, data catalog
and management platforms, Kubernetes, Openshift, LFEdge, Kubedge, SD-WAN enablers, Kubernetes Cluster
management and interconnection tools. The deliverable also provides a classification of whether these tools
are adapted to micro-service, cloud, edge, and far edge. It is worth mentioning that this deliverable
corresponds with the preliminary outcome of task 2.3 titled “Technological tools for CECC”.

The first high-level functional architecture of the AC3 framework, as well as the CECCM components, were
introduced and described in the deliverable D2.1. The envisioned architecture has been divided into 3 planes:
the user plane, the management plane, and the infrastructure or CECC resource plane. The user plane
includes the components that interact directly with the application developers. The management plane is
the core function of the CECCM. It includes three key components: (i) Application and resource management
that handles LCM of applications as well as orchestrates and manages the CECC infrastructure using AI/ML
based solutions; (ii) Data management that manages access to cold and hot data following the Gaia-X
procedures to access data spaces and IoT data sources federated with AC3; (iii) the abstraction and federation
layer needed to manage the federated infrastructure composed of computing resources (Cloud, Edge and
Far edge). In AC3, we envision a federated CECC infrastructure, which is composed of Public/Private cloud
resources, edge resources, far-edge resources, and networking resources provided by different infrastructure
providers.

Each Plane requires the implementation of different components and functional blocks that together allow
the AC3 framework to provide its services to the application developer and or the CECCM user while
interacting with different LMS handling the CECC infrastructure. However, not all the building blocks of the
framework need to be implemented from zero. Indeed, by reviewing the state of the art, there are several
existing tools and technologies from partners’ portfolios or well-known and used technologies that can be
adapted and reused fully or partially to achieve the vision of CECCM.

To avoid any future integration issues, it is important to carefully select the technological tools to be used in
the project and align the project’s activities with these choices. Considering these facts, in this deliverable,
the consortium surveys and presents the existing tools that can be used to implement the AC3 framework.
Those tools include open-source technologies and tools developed by members of the consortium.

Several technological tools, orchestration systems, and open-source solutions are listed in this deliverable.
The listed tools are grouped according to the plane to which they belong. All tools related to the user plane
are grouped in one section, including the components that interact directly with the application developers:
(i) the Human Machine Interface that allows an application developer to interact with the CECCM to develop,
deploy, and manage applications life cycle; (ii) The applications profiles, ontology modeling tools, and
application descriptor models; (iii) the Service and Data Catalogue existing tools. Another section is dedicated
to the tools that are needed at the management plane and the interaction with the infrastructure plane.
Indeed, a first part is dedicated the management plane components, cloud-native application’s Life
Cycle Management systems (including service orchestration and monitoring), Data Management solutions,
and related technologies. A second part is devoted to the tools used to interact with the infrastructure plane,
wherein we focus mainly on the Local Management Systems (LMS), which are employed to manage and
orchestrate the resources and networking. To recall, in AC3, we do not contribute to the infrastructure plane;
rather, we use the interfaces exposed by the LMS to interact with CECC infrastructure. This will allow the
CECCM to use a federated infrastructure involving different stakeholders.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 11

The deliverable concludes on the gaps that exist in the current tools such as the lack of AI-based solutions for
application and resources management, and the challenges to implement seamless federation of resources,
which will be considered and tackled in WPs 3 and 4.

The outcome of this document is the output of task 2.3 and will be considered as an input for work package
2, 3, 4 and 5.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 12

2. Introduction

In today's rapidly evolving technological landscape, where the convergence of Cloud, Edge, and Far Edge
technologies (known as Cloud Edge Computing Continuum - CCEC) is driving innovation, the Agile and
Cognitive Cloud-edge Continuum management (AC3) project stands at the forefront of this transformative
wave. AC3 is a pioneering European endeavor aiming to redefine the boundaries of contemporary computing
paradigms and meet the demands of the modern digital age. CECC architecture is complex as it involves a
high number of technologies and stakeholders which should cooperate to deploy an application over CECC.
Indeed, deploying an application over the CECC infrastructure requires an agile and cognitive management
system that abstracts this complexity to the application developer.

To alleviate this complexity, the AC3 consortium has delivered in D2.1 a first high-level architecture that
describes the key functional blocks of the CECC Manager (CECCM), which aims to deploy micro-service-based
applications along with the requested data (hot or cold) on top of a Cloud Edge Computing Continuum
infrastructure. The CECCM components and its internal functional blocks interact with applications’
developers to ease the definition and Life Cycle Management (LCM) of micro-service-based applications, such
as description, deployment, and monitoring of applications, ensuring optimal access to data hot or cold.
Meanwhile, CECCM uses AI/ML algorithms to guarantee cognitive and agile management of application Life
Cycles and optimal resource management. Finally, CECCM interacts with LMS to access CECC resources based
on a federation of infrastructure providers. Deliverable D2.3, titled "Report on Technological Tools for Cloud
Edge Computing Continuum (CECC)," emerges as a cornerstone as it aims to establish clear state-of-the-art
technological tools that can be the basis of the CECCM components to avoid implementing the different
components from scratch, while shedding light on missing gaps that need to be fulfilled in the concerned
WPs (i.e., in WPs 3 and 4).

The AC3 architecture is organized into three layers: User Plane, Management Plane, and Infrastructure or
CECC plane. Each plane has objectives that need to be realized to handle the application LCM and manage
the infrastructure efficiently using state-of-the-art AI/ML algorithms. The user plane functional blocks directly
interact with the application developers, allowing them to execute the well-known CRUD operations, i.e.,
Create, Read, Update, and Delete applications. The management plane functional blocks enforce the CRUD
operations, translating them to formats and operations understandable by the different LMSs. The last plane
is the infrastructure plane, corresponding to the computing and networking resources. The two first planes,
which are covered by the CECCM, and the interfaces between the management plane and the different LMSs,
handling the CECC infrastructure, need to be devised by the AC3 project.

In this deliverable, the consortium’s main objective is to navigate through the various existing
technological tools that can be used to implement the functional blocks of the CECCM. We have mainly
reviewed tools from the partners’ portfolios as well as well-known tools such as Kubernetes. These tools
are categorized and mapped to the AC3 architecture functional blocks, such as Service Catalogue, Application
Life Cycle Management, Data Management, and Local Management System. Having listed the existing tools
and those that can be used to implement the functional blocks in WPs 3 and 4, we have analyzed the gaps
that require adaptation and the development of new tools to best align with the AC3 framework.

This deliverable will be a reference guideline for the WPs 3 and 4 during the development phase of the CECCM
and will ease the integration process envisioned in WP5. Indeed, by establishing earlier a clear vision on the
technological tools to use, the integration process will be smoother by reducing the usual integration issues.

2.1. Mapping AC3 Outputs

The purpose of this section is to map AC3 Grant Agreement commitments, both within the formal Deliverable
and Task description, against the project’s respective outputs and work performed.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 13

Table 1: Adherence to AC3 GA Deliverable & Tasks Descriptions

AC3 GA
Component

Title

AC3 GA Component
Outline

Respective Document
Chapter(s)

Justification

DELIVERABLE

D2.3 Report on technological tools for CECC

TASKS

Task T2.3
Technological
tools for CECC

Task T2.3: The aim of this
task is to perform an
extensive comparative
study of the available
technological tools that
can be used to implement
the different components
of the CECCM and LMS in
accordance with the
predefined architecture
model and target metrics.

Section 4, Section 5,
Section 6

Presented the available
technological tools for each layer
of the AC3 Framework
architecture.

2.2. Deliverable Overview and Report Structure

In this section, a description of the Deliverable’s Structure is provided, outlining the respective Chapters and
their content:

• Section 3 recalls the AC3 CECCM framework architecture.

• Section 4 presents the tools that are related to the User plane that includes the components that
interact directly with the application developers: the Human Machine Interface that allows an
application developer to interact with the CECCM to develop, deploy and manage applications life
cycle. The applications profiles, ontology modeling tools and application descriptor models. In
addition to the Service and Data Catalogue existing tools.

• Section 5 provides the tools that can be used for Infrastructure and Resources management. The
tools include cloud-native application’s Life Cycle Management systems, Data Management solutions
and technologies, and Local Management Systems which correspond to the technology adopted by
the infrastructure to manage and orchestrate the resources and networking.

• Finally, Section 6 concludes the gaps that need to be addressed by the project in order to implement
the AC3 CECCM Framework.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 14

3. Overall Architecture of the AC3 CECCM Framework

In this section we recall the high-level architecture adopted by AC3. The proposed architecture, illustrated in
Figure 1, is composed of three planes: the user plane, the management plane, and the Infrastructure or CECC
plane. Each plane has its own components and uses well-defined interfaces to communicate with the other
planes. While the user and management plane are components of the CECC Manager (CECCM), the CECC
plane corresponds to the infrastructure constituting the CECC, i.e., data source, computing nodes (central
cloud, edge, and far edge). This architecture is detailed in deliverable 2.1.

The user plane includes the components that interact directly with the application developers. It includes the
Application Gateway that allows an application developer to interact with the CECCM to develop, deploy,
and manage applications’ life cycle. The service catalogue includes a blueprint of the application's
description, which can be extended or adapted by the application developer to create new applications to
be deployed by the CECCM. The service catalogue also includes information on data sources, particularly cold
data (i.e., data lake) federated using the Gaia-X approach. Finally, the last component of the user plane is the
Ontology and Semantic aware Reasoner that translates and interprets all policies used by different CECCM
actors (e.g., data source and application developers).

Figure 1. High-level architecture of AC3 and corresponding sections in the deliverable

The management plane is the core function of the CECCM. It includes three key components: application and
resource management, in charge of the LCM of the applications and the CECC infrastructure management
and orchestration. Data management that manages access to cold and hot data following the Gaia-X
procedures to access data spaces and IoT data sources federated with AC3. The abstraction and federation
layer, as in AC3, we envision that the owner of the CECCM may use federated resources (computing and
networking) from different infrastructure providers, thus the abstraction and federation layer role is needed
to allow resource discovery of the federated infrastructure and CRUD over the federated CECC infrastructure.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 15

Finally, the Federated CECC infrastructure plane is composed of Public/Private cloud resources, edge
resources, far-edge resources, and networking resources.

In the following sections, we present the candidate technological tools to implement the CECCM
functionalities, divided into User Plane and Infrastructure and Resources management. First, the User Plane
includes the Human Machine Interface that allows an application developer to interact with the CECCM. The
service catalogue includes blueprints of the application’s description and information on data sources. And
the Ontology and Semantic aware Reasoner that is responsible for interpreting the policies of the different
CECCM actors. Second, the Infrastructure and Resources management, in which we present the tools that
can be used to implement the cloud-native application’s life cycle management while supporting application
and infrastructure monitoring. Data management describes the tools that allow the management of access
to cold and hot data, in addition to procedures allowing to register, connect, and extract data from sensors
owned by the application developer or a third-tier IoT provider. Local Management Systems (LMS) which
correspond to the technology used to manage and orchestrate infrastructure’s resources and networking.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 16

4. User Interaction

This section reviews all tools related to the AC3 user plane, including the components that interact directly
with the application developers: (i) the Human Machine Interface that allows an application developer to
interact with the CECCM to develop, deploy, and manage applications life cycle; (ii) The applications profiles,
ontology modeling tools, and application descriptor models; (iii) the Service and Data Catalogue existing
tools.

4.1. Human Machine Interface

4.1.1. EURECOM’s Web portal

EURECOM hosts a facility that allows deploying cloud-native applications on top of a Cloud Edge Continuum
infrastructure. It supports different wireless connectivity including 5G, Lora, etc. To ease the automatic
deployment of a trial on top of the facility and collect key performance indicators (KPI), EURECOM developed
a Graphical User Interface (GUI) in the form of a Web portal. The last one provides the trial owner a high-
level view management interface to deploy, remove, and monitor a trial. All the trials in EURECOM facility
runs as a slice [1], to guarantee multi-tenancy. To be enforced on top of the infrastructure, all the trial needs
to be described using a Network Slice Template (NST) that includes information on the Cloud/Edge
components, such as the application images, the needed computing resources for each application, such as
CPU, memory, storage, and the location where to deploy the application. The NST also includes information
on the wireless connectivity needed if IoT devices or 5G cellular devices need to be deployed. The NST is
further divided into three parts: meta-data on the trial, wireless and network connectivity, and applications
to run on the Cloud Edge Continuum. The applications and their needed resources are defined using the ETSI
NFV standard descriptor, known as Network Service Descriptor (NSD) [2]. The NST format is based on JSON
format. The web portal abstracts the creation of the NST to the application developer. The latter indicates
using forms the needed information, and automatically the web portal generates the NST file. Then, the NST
is sent to the management and orchestration system to deploy on top of the infrastructure the trial.

In, Figure 2, we illustrate the web portal architecture. It comprises a front-end, trial enforcement, life-cycle
management, and KPI monitoring and presentation, as well as two databases (DB). All the components
collaborate to ensure the trial’s life-cycle, consisting of the definition and preparation, configuration and
instantiation, run-time management, and deletion.

Figure 2. EURECOM's Web portal components

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 17

1) Trial definition and preparation: The trial definition and preparation are done by the trial owner
using the front-end GUI, which corresponds to a web portal. This step consists of filling out a form
that describes the trial scenario, the network resources, and the KPI to measure. Besides meta-data
information on the trial, such as the start and end time of the trial, filled data concerns all the
components of the network slice needed to run the trial. EURECOM facility allows the trial owner to
specify the information on the needed cloud/edge resources, wireless connectivity, and application
image location. Following ETSI NFV model, the applications are deployed as a network service in form
of a monolithic or micro-service-based components. The network service can be composed of one or
more applications, but also applications that can run on the client side, i.e., on the user device. The
trial owner can deploy not only services at the edge but also on the device side to be able to test the
server side of the application from a 5G or IoT device. To define a network service (i.e., a set of
applications connected together to provide a service), the trial owner uses the GUI to create an NSD,
which will contain one or more applications defined using the Application Descriptor (AppD) model
of MEC ETSI [2] or Virtual Network Function Descriptor (VNFD) of NFV ETSI [3]. We extended the
AppD with one field that indicates the type of deployment: edge or far edge (i.e., on the 5G or IoT
device). Again, the trial owner can use the GUI to fill the AppD field, simplifying the configuration
process. Consequently, the trial owner does not need to know about the NSD and AppDs formats.
Indeed, the trial owner has to fill the form, and automatically the NSD with all AppDs is generated.
At this step, the trial owner needs to provide information, such as the location of the application
image(s) to deploy both on the edge and far edge, the amount of CPU as well as memory to assign
to the application. Finally, the trial owner can select, from a list, the KPI to monitor. As output, the
front-end produces a Trial Descriptor (TD) that contains all the information entered by the trial
owner, i.e., meta-data, wireless and networking information, NSD with the list of AppD, and the KPI
to monitor. New information is added to the meta-data part, which is the trial Identifier (ID)
generated by the front end. The trial ID is used to identify the trial, as a vertical may run several trials
of the same scenario but with different resource configurations. The TD is stored, along with other
information (like the vertical ID), in the Trial DB.

2) Configuration and instantiation: This phase starts after the generation of the TD by the front-end
module. Once the TD is stored in the Trial DB, the Trial enforcement is called. The Trial enforcement
translates the TD to an NST and uses the Northbound Interface (NBI) of the Management and
Orchestration System (MOS), to first request the configuration of the Network Slice and check the
resource availability. Once the request is accepted by the MOS (a Slice ID is created and sent back),
the Trial enforcement requests the instantiation of the Network Slice using the returned Slice ID.
When the MOS confirms the instantiation of the network slice, meaning that the trial can start, the
Trial enforcement updates the status of the trial to “running” in the DB and informs the front end
that the trial can start. The front end displays this information on the GUI (i.e., a web page), showing
the trial’s status, and allowing the vertical to start the monitoring process. Once done, the front end
forwards the request, including the Slice ID and KPI list (obtained from the Trial DB), to the KPI
monitoring and presentation module. The latter sends the request to the MOS along with the Slice
ID and KPI list. The MOS replies with two URLs; the first is to access the dashboard to visualize KPI in
real-time, and the second is to subscribe to a broker to access the data stream representing the KPI
in raw data form. The latter will allow the vertical to store data on the trials for future usages, such
as training Machine Learning (ML) models. Then, the KPI monitoring, and presentation module
creates an entry in the KPI DB, where the Slice ID and the corresponding URLs are stored. Then, it
forwards the URLs to the web portal, which displays them to the trial owner. The latter can decide
to use only the dashboard, subscribe to the broker’s URL to obtain the raw data, or use both.

3) Run-time management: The front end allows the vertical to update the assigned computing and
network resources to a running trial. Again, this can be done through the web portal, where the
vertical selects the resource type. Two possibilities are given to the vertical, update the Radio Access
Network resource by requesting more or fewer radio resources; and update the computing resources

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 18

of a running application. For each running application at the edge, the vertical can specify new values
for CPU and memory. The web portal redirects the request, with the Slice ID, to the Life-cycle
management module. The latter uses the NBI of the MOS to update the network slice resource. The
MOS confirms or rejects the update if there are not enough resources, and hence the vertical is
informed about the status of the request. The vertical can also resume a trial and restart it. The
resume step consists in sending a request to the MOS through the life-cycle module to stop the slice
without deleting its associated computing and network resources. The MOS also postpones the
collection of KPI. The restart procedure consists in instantiating the network slice again. When
resumed, the trial status in the Trial DB is updated accordingly.

4) Deletion: The vertical, when deemed appropriate, can manually stop and delete the trial before the
end via the web portal. Then, the request is sent to the MOS via the lifecycle module. Unlike the
resume case, the MOS will stop the slice and remove all the resources dedicated to it. The virtual
image of the applications is off boarded from the computing infrastructure (NFVI). The trial DB is
updated by removing the Slice ID corresponding to a trial. The front end proposes to the vertical if
the TD should be stored for future use, for instance, as a Blueprint. If the vertical accepts, the TD is
not removed from the DB. It will be proposed as a Blueprint to create another trial

5) Monitoring: Monitoring the performances of the different components is a critical process when
testing a network service. Indeed, the vertical needs to extract useful information regarding the
behavior of its applications from the infrastructure point of view. While the vertical can easily extract
service level KPI, it can be very pertinent to combine them with infrastructure KPI to build root cause
analysis and improve the performance of its applications. We grouped the collected KPI into three
groups: one on the RAN (such as latency, uplink, and downlink data rate), one on the edge cloud
(such as CPU and memory usage as well as data rate), and finally, one on the network slice level (such
as the time needed to deploy and decommission a network slice).

It should be noted that EURECOM’s Web portal can be used to cover the Application Gateway functionalities.
Of course, adaptations are needed as AC3 will use OSR model to deploy the micro-service-based application.

4.1.2. MAESTRO Service Orchestrator – Front-end user/developer interface

The MAESTRO platform end-user interface serves as the entry point of potential platform stakeholders to
onboard and manage their application over targeted infrastructures. This front-end environment provides all
the required entry fields for the onboarding of application components as well as the space for the
visualization of monitoring parameters, provided both by the network orchestrator and internally from the
management of the applications’ lifecycle.

The end user (application developer or vertical end-user or manager) is required initially to login successfully.
This activates the corresponding profile for each user type.

In the first step, the end-user can identify the necessary components from the related repository or enter
new components. Each application consists of a number of components that must be chained together in
order to provide the required functionality. Also, for each component, the developer should have the
capability to define certain networking and functional parameters based on which the network orchestrator
will provide the required placement in terms of location and resources. Therefore, for each new component
that is introduced there is a list of parameters that are defined such as mobility, and CPU or GPU, RAM and
storage needs. In addition, the interface provides the capability to the components to scale (in terms of
required resources) as the workload increases or decreases, thus adding to the dynamicity of the platform
tool, while ensuring the resource optimization.

The next step in the interface allows the developers to construct the application graph by logically connecting
the application components among them and providing the link characteristics (e.g., delay, bandwidth,
communication ports etc.), as well as any locality aspects (e.g., components to run at specific edge/site).

The MAESTRO dashboard can include information from a variety of applications or node parameters such as
deployment of application components and the live usage of resources through related resource metrics.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 19

(Beyond the dashboard visualization, such data can be used also for further processing and extraction of
prediction models or in general behavioral aspects of the application. In addition, the interface can be used
to provide network and node state alarms received by the network orchestrator or any other link related
metrics that can be fed back to MAESTRO.

Finally, an important role of the operators’ Interface is to act as the entry point and activator of the policies,
as well as the monitoring of already activated polices, which in turn manages the dynamic scaling of
applications.

4.2. Application / Ontology Descriptor

4.2.1. Ontology and applications profiles Description

Application profiles provide detailed descriptions of an application's features, requirements, and
specifications. They serve as blueprints for software development, highlighting an application's functional
and technical requirements and providing a clear understanding of its purpose and capabilities. In software
development, application profiles are used to guide the development, deployment, and monitoring of an
application throughout its lifecycle.

Application profiles are crucial in the context of CECC applications due to the complexity of these
applications. Often, these applications are distributed across several nodes, each of which may be in a
different location and use a different hardware platform.

The key elements of an application profile descriptor in the CECC context are: Application name and
description, Application Consumers, Microservices, Data sources, Load and traffic types, Deployment
context

Ontology is a formal specification of a conceptualization that aims to represent the knowledge of a specific
domain of interest. It establishes a set of concepts and categories, as well as their properties and relations,
and provides a shared vocabulary for describing and reasoning about a domain.

Ontology editors provide graphical interfaces to model ontologies by defining classes, properties,
relationships, and restrictions. They aim to simplify the ontology development process.

• Two prominent open-source ontology editors are Protégé and WebProtégé from Stanford University.
o Protégé [4] offers a desktop application with an intuitive GUI and integration with reasoners

for modeling OWL (Web Ontology Language) ontologies.
o WebProtégé [5] provides a lightweight web-based environment optimized for multi-user

collaboration.

• Both editors support standard ontology languages like OWL 2 and can be leveraged to develop the
application profile ontology through visual interfaces rather than manual coding.

In addition to dedicated ontology editors, there are also frameworks and libraries to manage ontologies
programmatically within applications.

• Apache Jena [6] is an open-source Java framework that provides an API for building semantic web
and linked data apps. It has capabilities for loading, storing, querying, and inferencing over ontologies
using code.

• OntoStudio [7] is a commercial ontology modeling suite with features like graphical editing and
integrated reasoners. It also offers APIs and libraries for accessing ontologies from external
applications.

Tools like Jena and OntoStudio allow tightly coupling the application logic with the ontology by manipulating
it directly through code. This facilitates tasks like dynamically querying the ontology to classify applications
based on their profiles.

Semantic reasoning plays a crucial role in leveraging ontologies for a variety of applications, including but not
limited to CECC and microservices. A semantic reasoner is a software tool or system that uses formal logic

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 20

and semantic knowledge to infer new information from existing knowledge. It is designed to process and
analyze structured data, such as ontologies, taxonomies, or knowledge graphs, in order to draw logical
conclusions and make intelligent inferences.

There are several semantic reasoners available that could be utilized to infer new knowledge from an
ontology.

• Pellet [8] is an open-source Java library for OWL reasoning. It provides standard reasoning
capabilities like classification, consistency checking, and realization. Pellet could be used to validate
constraints in an ontology and classify applications based on their profiles.

• HermiT [9] is an open-source reasoner powered by hypertableau calculus algorithms. It can
efficiently classify ontologies and detect inconsistencies. HermiT could help validate an ontology and
ensure logical consistency.

• Fact++ [10] is an open-source forward chaining reasoner built in C++. It utilizes a RETE engine for
optimized incremental inference. Fact++ would be applicable to derive new knowledge from large
sets of facts in the ontology.

• RacerPro [11] is a commercial reasoner capable of handling complex ontologies with very expressive
description logics. It provides both TBox and ABox reasoning. RacerPro could be leveraged if an
ontology uses advanced OWL 2 constructs beyond the basic profiles.

Reasoning rules are a central aspect of semantic reasoning systems. They allow expressing logical
relationships between different entities or concepts and can be used to infer new information from existing
information. Rules are often used to express logical inferences that cannot be directly expressed using the
ontology primitives. The rules are processed by the semantic reasoner, which uses them to perform logical
inferences and deduce new information from the ontology. This process may involve applying reasoning
techniques such as forward chaining and backward chaining, as well as checking logical consistency and
resolving contradictions.

Various rule languages have been developed to express the rules used by semantic reasoners in the context
of ontology languages.

• The Semantic Web Rule Language (SWRL) [12] is an extension of OWL, one of the main languages
for representing information on the Semantic Web. SWRL adds the ability to specify logical rules on
data defined in OWL. SWRL is fundamentally based on a subset of the first-order logic language,
which means it can express fairly complex relationships between entities in an ontology. SWRL makes
it possible to specify rules that can be used to make inferences about data.

• Rule Interchange Format (RIF) [13] is a standardized rules language developed by the World Wide
Web Consortium (W3C). Its main objective is to promote the exchange of rules between different
systems, and to enable interoperability between various rule formats.

• Web Rule Language (WRL) is another form of rule language used in the context of the Semantic Web.
WRL is a subset of the RuleML rule language and is mainly used to express complex rules in the
context of semantic web ontologies. WRL makes it possible to combine OWL ontologies with logical
rules, offering richer expressiveness.

4.2.2. EURECOM’s Network Service Descriptor

EURECOM’s NST is used to deploy a trial on top of its Cloud Edge Continuum facility (as described in section
4.1.1.1). The NSD is used to describe the application deployment to automate the LCM of the applications.
Each application or a component of the application (i.e., micro service) is described using a Virtual Network
Function Descriptor (VNFD), if it needs to be deployed at the centralized cloud or AppD if the component
needs to be deployed at the edge. Both descriptors rely on the ETSI NFV and MEC specifications.

Both the VNFD and AppD include information needed to automate the deployment:

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 21

- Meta-data: it describes data added by the Management and Orchestration, such as the Id of the NSD,
the owner Id, and the version.

- URL: URL indicating the image location on the Internet. It can be a public directory, such as Docker Hub,
or a private directory. The URL can also indicate a Github link if the image needs to be built.

- Needed computing resources: CPU, Memory, and storage.
- Algorithms to scale up or down resources.
- Configuration parameters: These parameters are needed when deploying a container-based application

or micro-service image.
- Location: Location where to deploy the applications. It can be a region Id or Infrastructure identifier

(cloud, edge, or far edge)
- Traffic redirection: This is needed for AppD to indicate the type of traffic that needs to be redirected to

the edge application.

4.2.3. Languages to describe applications

JavaScript Object Notation (JSON) is a lightweight data interchange format. For computers, it is easy to
generate and parse. For humans, it is easy to read and write thanks to its simple syntax and treelike structure.
It enables representing structured data. In the context of the project, specifically for modelling application
profiles, we opted for the format for several reasons:

• JSON is a textual data format that is easy to read and write for both humans and machines. This
simplifies the development and maintenance of application profile models.

• JSON is a widely accepted standard supported by many technologies and programming languages
including JavaScript, Python, Java, and many others. This facilitates integration with different system
components.

• Although simple, JSON is flexible enough to represent more complex data structures if needed.

YAML is a human-readable data serialization language that is often used to code configuration files. For some,
YAML stands for Yet Another Markup Language, for others it is the recursive acronym YAML Ain't Markup
Language, which stresses that YAML is used to represent data rather than documents. We chose to use the
YAML format to define the deployment and monitoring policies for our project for several key reasons:

• One of the most significant advantages of using YAML is its native compatibility with deployment
tools. YAML is used to define and manage services, networks, and volumes for different services.

• YAML is designed to be easily readable by a human. Its structure is simple and intuitive, making the
configuration file transparent and easy to understand.

• YAML allows complex data structures through its arrays, dictionaries, and scalar types. This flexibility
allows us to create highly flexible deployment and monitoring policies.

OWL (Web Ontology Language) is a semantic markup language used to represent ontologies and knowledge
graphs. In our project, we leverage OWL to formally define the concepts, properties, and relationships of our
application profile ontology.

We chose OWL because it provides greater machine interpretability than other ontology languages. OWL has
a well-defined semantics grounded in description logic, allowing automated reasoners to infer additional
knowledge from the asserted facts. This capability is useful for validating the ontology, ensuring consistency,
and deriving implicit relationships.

The application profile ontology represents the key characteristics and requirements of microservice-based
applications. By using OWL to model the ontology, we can leverage semantic reasoners to classify
applications based on their profiles, detect inconsistencies, query for specific criteria, and more.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 22

4.3. Service and data Catalogue

4.3.1. Service Catalogue

A service catalogue includes information about the services that are deployed. It may be extended and
include also generic information on services that are onboarded, but not initiated (i.e. service repository)
Such information may vary depending on the implementation.

For AC3 the goal is to maintain the initial service deployment request and the information related to the end-
user requirements (policies) introduced per deployment request. These can be extended also to data related
requests in which case an interconnection with data catalogue is required. At this level there is no need to
include live service updates since these are handled in an automated manner through the AI-based
application and resource management block.

Related service catalogue implementations have been developed for the MAESTRO orchestrator solution. In
its earlier version the catalogue is a simple repository of the registered services that includes the user-
declared onboarding parameters (bandwidth, latency, component dependencies) and the image locations.
The developments towards the latest version includes also the integration of resource catalogue information
for the interrelation with potential deployment locations as we a dynamic service update part to
accommodate live service deployment updates during the service lifecycle.

4.3.2. Data Catalogue

The establishment of data spaces is instrumental in facilitating a secure, interoperable, and sovereign data
exchange ecosystem within the AC3 CECC framework. A critical element within such data spaces is the data
catalogue, which serves a pivotal function in both the genesis and the maintenance of data spaces. It lays the
groundwork for data identification, retrieval, and regulatory compliance across these computational
continua. The data catalogue functions as an integral conduit between data providers and consumers,
ensuring that the extensive data repositories within the data spaces are not only accessible and
comprehensible but also subject to effective oversight. In this document, we aim to furnish a succinct
exposition of several of the most distinguished data catalogues presently in existence.

4.3.2.1. IDS Metadata Broker

The International Data Spaces (IDS) framework lays the groundwork for the evolution of a worldwide digital
economy by merging a technical infrastructure with governance models that support the secure,
standardized, and facile integration of data within data spaces. This standard champions data sovereignty,
empowering organizations and individuals with control over the usage parameters of their data within the
value chain, such as the conditions, timing, and pricing. This autonomy is pivotal for fostering novel,
intelligent services and facilitating ground-breaking inter-organizational business procedures.
The development of the data spaces ecosystem is predicated on the orchestration of several key components
as per the IDS framework:

• Identity Provider: Establishes the digital identity of participants.
• IDS Connector: Serves as the gateway for engaging in data exchange.
• App Store and Data Apps: Provide applications for data usage and management.
• Metadata Broker: Facilitates the organization and retrieval of data descriptions.
• Clearing House: Ensures compliance and records transactions.
• Vocabulary Hub: Harmonizes the terminologies used within the ecosystem.

An expansive description of the functionalities of these components is available in the IDS Whitepaper [14].
Participants looking to engage in the ecosystem must first authenticate their identity via the Identity Provider
and then connect through the IDS Connector. This initiates the process of data exchange among the various
stakeholders in the data space environment. Figure 3 illustrates the interplay between different IDS
components, delineating the establishment of data spaces and the mechanics of data sharing among the
ecosystem's participants.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 23

Figure 3. Interaction between different IDS components for creating Data Spaces

The Metadata Broker, as delineated by the International Data Spaces Association (IDSA) reference
architecture, is the component that most closely embodies the functionalities of a data catalogue.
Its pivotal function is to maintain interoperability among data space entities through the utilization
of uniform metadata schemas. Additionally, it underpins data sovereignty by cataloguing critical
information regarding data governance, usage protocols, and proprietorship, thereby enabling
stakeholders to retain authority over their data repositories. Although individual data providers are
responsible for administering their proprietary data catalogues, the Metadata Broker orchestrates
a cohesive, federated framework, permitting queries to be conducted across the collective data
space network. The Broker parallels the traditional data catalogue by acting as the nexus for
stakeholders to locate and apply data within the IDS environment. Furthermore, elements such as
the IDS Connector also parallel certain aspects of a data catalogue by allowing data providers to
delineate and implement data utilization policies; however, they do not function as catalogues in
their own right. Collectively, the suite of IDS components synergizes to manifest a comprehensive
virtual data space. This integrated system facilitates the registration, discovery, and procurement of
metadata about various data sources, all within the ambit of ensuring data sovereignty and fortified
data transactions.

4.3.2.2. XFSC (Former GXFS) catalogue

The Gaia-X initiative in Europe is pioneering a framework through its Gaia-X Federation Services (GXFS) aimed
at fostering a competitive digital ecosystem, one that offers a European alternative to the dominant, often
non-European cloud service providers. This endeavor is not only focused on reinforcing Europe’s digital
autonomy but also on stimulating a vibrant market for innovation. Gaia-X envisions data spaces as secure
and compliant networks in accordance with European standards, where data and services are exchanged
within a federated, open data infrastructure. A central objective of Gaia-X is the assurance of data sharing
and sovereignty, which includes establishing standards for data spaces. Within this framework, a data
catalogue serves as a vital index, detailing information on the data and services accessible in the Gaia-X

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 24

ecosystem. Specifically, this catalogue is a repository of metadata regarding various data sets, guiding users
on data availability, access modalities, and the terms of use. The Gaia-X Federation Services (GXFS) integrates
into the wider Gaia-X architecture, providing capabilities that support a federated data infrastructure. Among
these capabilities are federated catalogues, which list datasets and services, enhancing their discoverability
and interoperability. Within the GXFS catalogue are foundational features that enable the identification of
Gaia-X resources, assets, and participants by potential users. Entities within GAIA-X are characterized by Self-
Descriptions, which, when intended for public use, are inputted into the relevant catalogue. The catalogue's
purpose is to facilitate the connection between consumers and the most suitable offerings and to track
important updates to those offerings. The catalogue stores numerous Self-Descriptions, both as raw JSON-
LD files and as part of a Self-Description Graph, enabling sophisticated queries through interlinked Self-
Descriptions. The GXFS Catalogue is designed as a distributed system, composed of multiple components to
leverage existing technologies and allow scalability. These components, detailed at official website [15], can

be deployed independently and include:
• Catalogue: The primary module, providing essential catalogue functions.
• Authentication: An external module managing authentication and user profiles.
• Graph-DB: A graph database that holds all assertions from active Self-Descriptions and executes
semantic search operations.
• File Store: A binary storage system, which archives the Self-Description files and schema files,
including their historical iterations.
• Metadata Store: A repository for the metadata pertaining to the Self-Descriptions and Schemas in
the File Store.

Currently, the Gaia-X Federation Services (GXFS) project has been moved under the governance of the Eclipse
Foundation and the project is going to continue evolving under the name of XFSC with full open-source
governance. For more details and to get assistance for deployment, one can visit the Eclipse Foundation’s
official GitLab repository [16] or follow the Software requirements specification for GXFS [17]. Following
the Gaia-X guidelines, one of the consortium members – IONOS has already developed a deployment script
to run the Catalogue over the IONOS Cloud infrastructure, which is available to the IONOS’s official GitHub
repository [18].

4.3.2.3. EDC Catalogue

The Eclipse Foundation is instrumental in fostering the development of technologies pivotal for constructing
data spaces and ancillary components, such as data catalogues. These technological solutions furnish the
requisite framework to efficiently administer, catalogue, and regulate data accessibility in a manner that is
secure, compatible, and scalable. Initiatives like the Eclipse Dataspace Connector align with the broader
ambition to establish secure and autonomous data spaces, providing essential elements for the safe and
regulated exchange of data across diverse data domains. The Eclipse Dataspace Connector exemplifies a
platform offering the components necessary for the secure and governed sharing of data among various data
spaces. In the context of the Eclipse Foundation's projects, a data catalogue is designed to act as a repository,
offering a searchable inventory of datasets and services for user and application discovery. It retains
metadata concerning data assets to aid in data identification and comprehension, enforces data governance
standards to ensure compliance with designated access and sharing policies, and promotes interoperability
among disparate data providers and consumers through adherence to shared standards and protocols. Figure
4 conceived by the Eclipse Foundation, depicts a functional schematic of data spaces. It illustrates how data
space connectors, in collaboration with data catalogues, function as logical stewards to integrate ecosystem
participants and facilitate sovereign data exchange. Most of the related development are open-source and
can be found in official GitHub repositories [19] of the Eclipse Foundation.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 25

Figure 4. A conceptual diagram of the creation of Data Spaces

4.3.2.4. Piveau Catalogue

Besides IDS, XFSC, and EDC Catalogues Piveau [20] has also offered an open-source metadata catalogue
solution for managing their data management platform for the public sector. Piveau harnesses Semantic Web
technologies, aligning with the World Wide Web Consortium's (W3C) Data Catalog Vocabulary (DCAT)
standard and the European DCAT-AP (DCAT Application profile for data portals in Europe) [21] specification
for Open Data. It bridges the divide between the theoretical metadata frameworks and their practical
implementation in live environments. With a focus on Open Data, Piveau stands at the forefront of providing
solutions for public entities and nonprofit organizations to disseminate metadata catalogues that are both
interoperable and adaptable. The data management system proposed by Piveau is constructed upon a
microservices architecture, supplemented by a bespoke pipeline system, to enable a modular and extensible
assembly of features. Within its functional architecture, the Piveau hub is the pivotal repository for data
storage and registration. In contrast, Piveau Consus undertakes the role of data ingestion, engaging in the
collection, scheduling, transformation, and standardization of data from a myriad of sources. Additionally,
the Piveau metrics module is tasked with the generation and upkeep of detailed quality metrics, which are
then integrated back into the Hub. A critical facet of this architecture is the Piveau pipeline (PPL), which
represents the sequential data processing workflow, defined by a straightforward JSON document
enumerating various processing segments. For more details one can follow the Piveau official documentation
[22].

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 26

5. Infrastructure and Resources Management

This section is dedicated to the tools that are needed in the management plane and the interaction with the
infrastructure plane. The section is divided into two parts. The first one covers the tools dedicated to the
management plane components, cloud-native application’s Life Cycle Management systems (including
service orchestration and monitoring), Data Management solutions, and related technologies. The second
part is dedicated to the tools used to interact with the infrastructure plane, wherein we focus mainly on the
Local Management Systems (LMS), which are employed to manage and orchestrate the resources and
networking. To recall, in AC3, we don’t contribute to the infrastructure plane; rather, we use the interfaces
exposed by the LMS to interact with CECC infrastructure. This will allow the CECCM to use a federated
infrastructure involving different stakeholders.

5.1. Application Life Cycle Management

5.1.1. Orchestration

5.1.1.1. CLiSO Framework

CLiSO is an end-to-end Cloud-native Lightweight Network Slice Orchestration framework capable of
orchestrating Container Network Functions (CNF) that need to be deployed on top of a container-based
infrastructure managed by Kubernetes and Openshift. CLiSO is deployed in the EURECOM facility as a
Management and Orchestration System (MOS) to deploy container-based applications or micro-services on
a Cloud Edge Continuum infrastructure. CLiSO can deploy on public, private, and hybrid cloud, which also
allows dynamic management of infrastructure.

Figure 5. Cloud-native Lightweight Slice Orchestration Framework

As illustrated in Figure 5, CLiSO is composed of two layers the Service Orchestration Layer (SOL), which is
responsible for translating Service Level Objects (i.e., AppD/VNFD) to Resource Level Objects (RLOs) (i.e.,
containers coordinating with resource orchestrator. Whereas Resource Orchestration Layer (ROL) manages
the resources by communicating with the underlying resource pool managed by Local Management Systems
(LMS) according to AC3 terminology. CLiSO interacts with different LMS using the notion of plug-in that uses
the LMS NBI. In terms of LMS, CLiSO supports Kubernetes, OpenShift, and K3S. CLiSO exposes Northbound
API to handle NSD LCM composed of a set of applications or micro-services described using AppD or VNFD.
CLiSO uses a Container Image Registry (CIR) to store containers downloaded from the Internet (using URL

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 27

link included in AppD and VNFD) to be deployed on the infrastructure. CLiSO supports dynamic resource
management of resource pool. Indeed, CLiSO allows the registration of LMS in an asynchronous way. In AC3,
CLiSO can be used at the management level to deploy micro-service-based applications on top of the Cloud
Edge Continuum infrastructure.

5.1.1.2. MAESTRO Service Orchestrator – Application and resource management

The core part of the MAESTRO Orchestrator framework provides service orchestration for containerised
applications, registered and onboarded in the form of Application Function Chains (AFCs) and includes two
main functionalities: a) the service deployment cycle and b) the runtime service and resource update cycle.
The platform is integrated with vanilla Kubernetes APIs and supports service-level telemetry using
Prometheus & NetData, extendable to other monitoring engines (e.g. from network resources or Kubernetes
platform). The current design includes the ability to define SLAs during service order and apply policy related
criteria through a runtime decision engine which can be extended to include AI based decisions. A schematic
of the MAESTRO framework is presented in Figure 6 and is further explained in the following paragraphs.

Figure 6. MAESTRO service orchestration framework

The MAESTRO deployment cycle phase: The deployment process of the MAESTRO is handled through the
service order and inventory block. The service layer requests and policies formulate a certain service order
using the related TMF standards. An e2e service manager promotes the order to a service request dispatcher
the interfaces with the underlay infrastructures. The process may include an initiation phase through which
certain infrastructure details may be queried and collected, exposing details (e.g. topology information) to
the service orchestration for formulating the requests. Once the request is processed the available resources

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 28

are allocated and the connection information is returned to the deployment module of the service
orchestrator for deploying the images and initiate the service. The underlay concept promotes the logical
separation and management of the two layers allowing applications to be defined at high level with specific
SLAs and requirements (i.e. in an end-user friendly format) and then translated through the service
onboarding API to service deployment intents that are handled at the network orchestration level.

The MAESTRO Runtime management phase: Once the service has been initiated, the lifecycle manager is
responsible for the configurations during runtime. The overall mechanism includes a monitoring module and
a policy engine that extracts decisions for service reconfiguration based on the interrelation between
monitored parameters, policies and service SLAs. The process is triggered from monitoring alerts that are
next analysed and injected to the lifecycle manager as a series of configuration events that must be
implemented in the appropriate order. The process is linked to the service and resource inventory for
retrieving the service and network status respectively. The flow of configuration events is then pushed to the
deployment manager that interfaces with the underlay network orchestrator. The decision engine can be
upgraded with AI-based mechanisms for automated selection of optimised configuration flows. It is noted
that in its simplest form (not shown in the diagram above) the decision outcomes can simply return to the
service level (end-user) as a list of recommendations that then can be managed manually through the
deployment loop.

5.1.2. Monitoring

5.1.2.1. EURECOM’s Monitoring

Figure 7. EURECOM's Monitoring System

Figure 7 shows the architecture of the monitoring system. It is designed to monitor services that span
multiple domains and infrastructures, such as the deployment over different regions on top of the CECC
infrastructure. It is composed mainly of:

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 29

• Monitoring Manager: It is responsible for creating and configuring the metrics collectors and
aggregator for each service. It also creates the dashboards and visualizations related to the service
at the Data presentation components.

• Data presentation: this component is responsible for providing visualizations about the data to the
service owner or applications developer. Each service has it is own dashboards implemented on top
of two visualization tools:

o Grafana [23]: an open-source, multi-platform, interactive Web application for metrics
analysis and visualization. It provides customizable dashboards with configurable panels for
visualizing metrics stored in the InfluxDB time series database. Dashboards are custom
created per service, and metrics are provided on the overall performance of the service and
per application.

o Kibana [24]: It provides visualization capabilities on top of the content indexed on
Elasticsearch, allowing us to provide application logs to the application developer. Logs are
collected using FluentD [25] and stored on an Elasticsearch [26] cluster. The Kibana user
interface capabilities allow logs to be filtered by application, service or cluster. Kibana's user
interface features allow users to filter logs by application, service or cluster, and to browse
log history.

• Data brokers: In order to manage the metrics stream collected all over the CECC infrastructure and
to minimize the bottlenecks in the system, we use data broker to transfer the metrics:

o Lower-level data broker: It is responsible for transferring data from the infrastructure to the
CECCM where it can be stored or fed to AI algorithms. At this level we use Kafka, described
in Section 5.2.5.2, because it provides routing by topic, which gives a simple and robust
model for internal metrics transfer.

o External data broker: Used to deliver metrics to the application developer. At this level each
application owner will have a specific topic for the metrics of its service. The Broker used at
this level is based on RabbitMQ, a push-based system described in Section 5.2.5.1.This choice
is motivated by the fact that RabbitMQ allows more control over the message routing. It
offers more elaborate routing capabilities by providing various exchanges (direct, fan-out,
headers, topic).

• Metrics collectors: The metrics collectors are deployed for each service part in each region. Their
role is to collect metrics from the infrastructure concerning the target applications and services, and
transmit the data to the metrics broker. At the lower-level data broker, the metrics are pushed to
the topic specific to the subservice.

• Metrics aggregators: the role of the metrics aggregators is to collect the metrics from the metrics
broker, where the metrics stream is stored in the topic related to the sub service id. The metrics
aggregators add the service id to the data in order to allow the mapping between the service and the
metrics collected from the infrastructure.

5.2. Data Management

5.2.1. Data Spaces

The term "Data Spaces" typically denotes the establishment of virtual environments that facilitate the secure
and effective sharing and management of data among entities or individuals. This notion is at the heart of
numerous European strategies designed to forge secure and sovereign data transaction protocols within and
between various industries and sectors. Prominent organizations like the International Data Spaces
Association (IDSA), Gaia-X, and the Eclipse Foundation are leading the charge in crafting the requisite
standards, structural frameworks, and technological solutions to bring the idea of Data Spaces to fruition.

5.2.1.1. International Data Spaces (IDS) Components

Data sovereignty stands as a cornerstone of the International Data Spaces, characterized by the ability of
individuals or corporate bodies to exercise autonomous control over their data. The International Data

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 30

Spaces initiative advocates a Reference Architecture Model tailored to support this precise capability,
encompassing the stipulations for a secure and reliable data exchange within business ecosystems. This
initiative strives to fulfill several key objectives: fostering trust among stakeholders, ensuring security and
data sovereignty throughout the ecosystem, advocating for the decentralization of data repositories,
guaranteeing standardized interoperability for seamless communication across different technological
frameworks, and facilitating the emergence of innovative, data-centric marketplaces. Figure 8 delineates the
Reference Architecture Model as proposed by the IDSA.

Figure 8. IDSA Proposed Reference Architecture Model

The Reference Architecture Model of the International Data Spaces comprises several stratified components:
a) The Business Layer articulates the array of potential roles that entities within the International Data Spaces
may adopt and delineates the foundational patterns of their interactions. b) The Functional Layer outlines
the functional prerequisites of the International Data Spaces and delineates the resultant features to be
implemented, independent of any pre-existing technologies or applications. c) The Process Layer details the
interplay among various elements of the International Data Spaces, offering a process-oriented perspective
of the Reference Architecture Model. d) The Information Layer defines the universal Information Model,
which serves as the common vocabulary within the International Data Spaces. This model is a fundamental
consensus among participants, ensuring compatibility and interoperability. e) The System Layer maps the
roles identified in the Business Layer and the processes from the Process Layer onto a specific data and
service architecture, forming the technical nucleus of the International Data Spaces. This layer is constituted
by an array of core technical components essential for the development of data spaces.

One such pivotal technical component is the Identity Provider, which integrates three ancillary elements:
Certificate Authorities (CAs), which oversee the issuance and management of technical identity credentials;
the Dynamic Attribute Provisioning Service (DAPS), which distributes ephemeral tokens infused with current
connector information; and the Participant Information Service (ParIS), which offers both machine- and
human-readable data pertaining to IDS participants.

Conversely, the IDS Connector stands as a critical technical element within the IDS Reference Architecture.
The network of International Data Spaces is comprised collectively of these connectors, each facilitating data
exchange through its Data Endpoints, thereby negating the necessity for centralized data repositories. These

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 31

connectors should be accessible by other organization's IDS Connectors, which might necessitate alterations
to firewall configurations or the establishment of a demilitarized zone (DMZ). An IDS Connector should be
accessible via standard Internet Protocol (IP) and capable of functioning in any suitable setting. Entities may
manage multiple IDS Connectors for purposes such as load balancing or data segmentation, and these can
be hosted either on-premises or cloud-based environments. Figure 9 illustrates the architecture of an IDS
Connector, which encompasses one or multiple computers or virtual machines, the operating systems they
run, the Application Container Management, and the foundational Connector Core Service(s). A detailed
description can be found on the IDSA website [27].

Figure 9. Architectural diagram of IDS Connector

In addition to the IDS Connector, the App Store and App Ecosystem constitute another crucial technical
component that facilitates the development of data spaces. IDS Connectors can deploy IDS Apps for various
functions. There are three distinct categories of IDS Apps: The Data App, which handles data-related tasks;
the Adapter App, which connects disparate systems; and the Control App, which manages and oversees
operations within the IDS environment. All these app types can be integrated with and managed by the IDS
Connector. The Metadata Broker, another variant of the IDS Connector, is dedicated to the management of
Self-Descriptions, including their registration, publication, maintenance, and retrieval. This component
shares similarities with a data catalog, primarily functioning through interactions with the metadata within
the catalog. Despite its name, an IDS Metadata Broker does not operate as a message broker, nor does it
actively distribute data assets. Furthermore, the IDS Clearing House, integral to the architecture, combines
an IDS Connector with a logging service that meticulously records transactional data crucial for clearing,
billing, and usage control, as outlined in the Process Layer. Utilizing this data, the Clearing House offers
Clearing and Settlement Services based on usage agreements, facilitating the automation of financial
transactions between Data Providers and Data Consumers. Additionally, it supports a Billing Service that
enables Data Space Operators to invoice participants.

Lastly, the Vocabulary Hub addresses the need for interoperability within the IDS ecosystem. It equips
developers of domain-specific vocabularies with the necessary tools and features to craft, refine, and
disseminate their terminologies. While adherence to the RDF (Resource Description Framework) pattern is
anticipated, the imposition of other standards, such as Linked Data principles or formal ontologies, remains
flexible and not mandatory.

5.2.1.2. GXFS Data Spaces Components

Gaia-X expands the concept of dataspace by incorporating universal data services, such as storage and web
servers, to foster interoperability among diverse cloud services and IT infrastructures. Given the presence of

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 32

numerous organizations dedicated to defining standards, offering reference architectures, and providing
basic implementations for data spaces, Gaia-X commits to a strategy of shared standards rather than a single
proprietary solution. This common framework is crucial for ensuring seamless interoperability across
different systems. According to Gaia-X, there are several fundamental technical elements that are consistent
across data space models, which include:

• Dataspace: This is seen as a comprehensive suite of components that collectively facilitate the
autonomous exchange of data and services. A visual representation shows that multiple dataspaces
can operate simultaneously within the same compliance framework.

• Asset Provider: This role is assumed by an entity or individual that has ownership or control over a
particular asset, such as a dataset or service, and offers it within the dataspace.

• Asset Consumer: This refers to an entity or individual seeking to obtain or utilize an asset like a
dataset or service.

• Compliance Services: These are systems in place to certify the integrity of the dataspace components
and safeguard their ability to work together.

• Identity Services: These services are responsible for establishing and maintaining reliable identities
within the dataspace, thereby fostering trust among its users.

• Catalogue: This is a directory where asset providers can list their offerings, enabling asset consumers
to easily discover and access available assets.

• Data Exchange: These are the mechanisms that manage the interactions between providers and
consumers, encompassing agreement formation, activity logging, and the transfer of data.

For a more concrete understanding of the Gaia-X dataspace framework, Figure 10 illustrates how these
various components interact and integrate to form a coherent and compliant dataspace ecosystem.

Figure 10. Data Space ecosystem proposed by Gaia-X

5.2.1.3. Eclipse Data Spaces Components

The Eclipse Foundation outlines a data space as a collaborative structure, encompassing both an agreement
between organizations and the technological framework that underpins data exchange among various
participants. Trust levels within a data space may vary—some participants may share an established trust
from prior interactions, while others may be entirely new to each other, without any pre-existing trust, and
this can include competitors.

The Eclipse Data Space Components (EDC) offer an integrated solution—including a conceptual design,
architecture, codebase, and examples—that delivers a core suite of functionalities for dataspace
deployments. These functionalities are both basic and advanced, and they are accessible for customization

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 33

and extension through the use of the framework's APIs. This ensures built-in interoperability. The EDC is
aligned with the Gaia-X AISBL Trust Framework and the International Data Spaces Association (IDSA) data
space protocol, leveraging their specifications.

This framework is composed of several modules, including a data space connector, a catalog for data
discovery, a hub for managing identities, a registration service, and a management user interface for data
oversight. The project is actively being developed under the Eclipse Foundation's supervision. While it is
considered the most advanced initiative of its kind to date, there remains room for improvement and
optimization. Helpful resources can be found on their official website [28] and their official GitHub channel
[29].

Notably, to run the EDC instances on IONOS cloud, it is easier to use deployment scripts developed by IONOS.
This also includes the IONOS S3 Extension for the EDC [30], so the data can be read/stored on S3 of IONOS.
For more details, please check the corresponding GitHub repository [30].

5.2.2. Trust

5.2.2.1. Self-Identities Trust Tool

One of the pivotal objectives of Gaia-X/GXFS/XFSC and IDSA innovation is to prepare a reference framework
for ensuring the highest level of trust among the different stakeholders and participants of the data-
infrastructure ecosystem. Therefore, various components have been specified for developing a Trust
framework in the integrated and interoperable system. Below we are going to provide a small summary of
those tools and components:

• IDSA’s Identity and Trust Management: To gain reliable information and for establishing trust
between the participants IDSA [31] proposed the mechanism for Identity and Trust Management.
According to them, each IDSA connector instance possesses its own identity. Remarkably, the
distinctiveness of a combination of framework and service instance is tethered to an identifier for
the service instance. Furthermore, the distinctiveness encompasses the framework (hardware,
firmware, operating system), Connector Core Services software artifacts, configuration settings, and
associated IDS Apps or services. The distinctiveness of every connector is unparalleled and is essential
to the operation of the system. Importantly, every component within the IDSA possesses a unique
identifier (C_UID), which is tethered to the service instance. The uniqueness of this identifier is
ensured by the Identity Provider, and each C_UID is associated with a Connector Instance Key (CIK)
pair, employed for TLS and potentially for data signing and other identity proofs. Whereas IDS
certification process authenticates a blueprint of the entire stack including the platform and
connector core services. Apart from the distinctiveness of IDS components, some supplementary
information regarding the operating company and its software stack is required. To pave the way for
dealing with reliable connections robustly, the exchange of Source Indicators (SI), commonly known
as connectors, considers comprehensive identity data and constantly adaptive attribute Keys,
referred to as Dynamic Attribute Tokens (DATs), around a central platform—Dynamic Attribute
Provisioning Service (DAPS). This recognition procedure is steered around a set plan, acquiring
authentication keys, appealing to be issued an authenticated Dynamic Attribute Token, and ensuring
bonus points gained on these DATs on safe network connections known as TLS connections.
Furthermore, formal procedures known as the "Component Lifecycle" rightly encompasses handling
the evolution of every faucet of operational navigation elements of a system starting legitimately
from the initial provisioning, passing through vital maintenance stages, and cruising indefectibly to
meet the final decommissioning process. A fascinating factor permeating the spectrum of IDS
acceptances evidently states that beneficiaries involved purposefully in the wing of IDS, to be precise
various classifications embrace organizations of considerable multitude as well as individuals, each
procuring distinctive identifiers alias 'Originating unique ID'— O_UID. Tagged prominently in the
domain is this unbiased process of unmatched identity management responsible splendidly for the
inception of array edges lined on private-public watts and lids in possession of identity proofs

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 34

orchestrating an open dance of fostering a systematic designation for each regulatory nexus on the
sphere. Further components related to Trust Boots, together with chains commanding
righteousness, auto flow vehemently pointing out towards systematic dissection and engaged
acknowledgment acts coordinated adopting Intelligent Data Sources hedged under IDS connectors.
Furthermore, these are categorized sensibly broadening horizons technically ranging notably from
certificates urging the entitlement matrix spreading towards foundations decaled enigmatically as
CAs. An added layer vital includes sectors of operation formally indicated as leads putting stacks of
elemental rounds to establish structure certificates and related identity deciphers. In context lies a
bounty treasure — IDS, Its exciting basket of essentials behind crafting peerless facilities
programmed to construct a viable nexus focusing on exceptional security, take into account defying
the hatches journeying from holding component-related facts, employment sprinting parallel across
certificates based procedures, info consisting of smart data badges streaming tagging interaction
patterns, subsystems advanced handling lifecycle recruiting and candidates onboard christened with
unique key names, adding 'Originator unique identifier(O_UID)'. A feasible key pathway falls in line
jotted subtly as 'e-validations logging trust chains'. The entirety resonates loud posture singing notes
complimenting vastly the core of security, orchestrating blessed buttercup of control inside exchange

pages gravitating deep into data structures. Figure 11 presents the interaction between IDS
connectors and Identity Components.

Figure 11. Interaction between IDS Connector and Identity Components

• Gaia-X/GXFS/XFSC Identity and Trust: The Gaia-X ecosystem is formed by integration of an
Infrastructure and Data ecosystem, both connected via Federation services while the whole
architecture is based upon Policy Rules and an Architecture of Standards. Notably, Gaia-X sets the
overarching vision and framework, while GXFS (Gaia-X Federation Services) [32] and XFSC (Eclipse
Cross-Federation Services) [33] work to translate this vision into tangible services, components, and
tools that can be adopted by various stakeholders within the digital ecosystem. According to the
Gaia-X, trust framework can be extended by a federation, which can add more requirements on the
eligibility of the Gaia-X Trust Anchors and can add additional rules on top of the overall framework.
Besides that, the Gaia-X Compliance Service uses the same principles for Issuer, Holder, Verifier, and
Verifiable Data Registry as in the Verifiable Credential model. The framework under consideration
puts the issuers, also known as Trust Anchors, squarely in the driver's seat in managing the Trusted
Data Source, an entity endorsed by Gaia-X. This Anchor, also referred to as a Notary, is bestowed
with the entitlement of scripting Trusted Data Sources into a lingua franca understood by the
organization that looks after the Trusted Data Source. Central to Gaia-X's core tenet is the mechanism
of managing decentralized identities and engendering digital trust for both identities and resources
based on the Self-Sovereign Identity (SSI) paradigm. Believing in the power of W3C Verifiable
Credentials and a Distributed Identifier (DID), Gaia-X lets its participants’ commander personal digital
identities. Inspired by Gaia-X, GXFS alongside XFSC, suite of services empowered by Identity and Trust
veil to fortify federations’ abilities in confirming both the signature and the validity of participants,

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 35

primarily by gauging the authenticity of their credentials. Meticulously known for its prominent role
in sheltering ALL subsets in a federation with an encapsulating stratum of trust, an exclusive service
symbolized as the 'Authentication & Authorization Service' (AAS) comes to the fore. In the same
orbit as the aforesaid ecosystem lies the Personal Credential Manager (PCM), which graciously
shoulders the commonsensical role of an ardent representative of the consumer. Category-wise,
PCM is the frontrunner in encapsulating every distributed identity credential it curates and identity
attributes it hosts, in an ironclad layer thickened with affirmation. Steeped predominantly in
enhancing users' fusion with the SSI-induced eco-sphere calling upon VCs and DIDs, PCM perfects
the nuanced knack of infusing privacy into every interaction. Resolutely toeing the line on bolstering
the trust matrix involving the antiphonal communication among various components within the
Gaia-X system is the zealous work vision of the Organization Credential Manager (OCM). OCM takes
pride in its centralized role of endorsing credentials to businesses and managing them methodically
replete with patches of intricate detailing of trust rituals. Ensuring the dual functionalities of
implementation of the codes of conduct per se usage of decentralized components of Gaia-X, and
the regulation of trustworthy and mature nodes, are the Trust Services (TRU). Key to achieving this
security balance is cryptographic validation of every detail coming stitched in as credentials from the
ecosystem's periphery. Echoing stability in trust circles, the Notarization Service (NOT) authenticates
given master data and transforms it into a W3C-compliant, digitally verifiable representation. These
tamper-proof digital assertions about specific attributes are central to gaining the desired trust in
provided self-descriptions of assets and participants.

5.2.3. Cloud IoT & Data Platforms

5.2.3.1. AWS IoT Core & IoT GreenGrass

AWS IoT Core and IoT Greengrass collectively form a powerful combination of cloud and edge computing
services provided by Amazon Web Services (AWS) for Internet of Things (IoT) applications. These services
enable seamless connectivity, data management, and edge computing capabilities, bridging the gap between
cloud resources and edge devices.

AWS IoT Core serves as the central IoT hub in the AWS ecosystem. It manages device communication,
authentication, and authorization, ensuring secure and reliable connections between IoT devices and the
cloud. It leverages AWS's cloud infrastructure and security services. It is designed to work seamlessly with
other AWS services such as AWS Lambda, Amazon S3, and Amazon Kinesis for scalable data processing,
storage, and analytics.

IoT Greengrass extends AWS IoT capabilities to the edge of your network. It allows you to run code locally on
edge devices, enabling real-time data processing and decision-making at the edge. Greengrass enhances the
capabilities of IoT Core by providing local compute, messaging, and data caching. It relies on AWS Lambda
for local computing, MQTT for local messaging, and integrates with AWS IoT Core for device management
and communication. It is a pivotal component for extending AWS IoT capabilities to the edge.

While not directly integrated with IoT Core and Greengrass, container orchestration platforms like
Kubernetes and OpenShift can complement these services. They provide containerized application
management and orchestration, which can be used alongside IoT Core and Greengrass to enhance edge
computing capabilities, especially in scenarios where containerization and microservices architecture are
preferred.

AWS IoT Core and IoT Greengrass are designed to work in concert, with IoT Core serving as the cloud-based
IoT management hub and Greengrass extending these capabilities to edge and far-edge devices. Edge devices
can include a wide range of IoT sensors, cameras, industrial controllers, and more, while far-edge devices are
often located in remote or resource-constrained environments. When combined with container
orchestration platforms like Kubernetes or OpenShift, AWS IoT Core and Greengrass can effectively manage
containerized workloads on edge devices, providing greater flexibility and scalability.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 36

5.2.3.2. Google Cloud IoT Core

Google Cloud IoT Core is a managed service provided by Google Cloud for securely connecting and managing
IoT devices. It allows to easily connect and manage large fleets of IoT devices while ensuring scalability,
security, and flexibility. Here are some of the key features offered by Google Cloud IoT Core:

• Device Registry: IoT Core provides a device registry to store device metadata and configuration data,
making it easy to manage and monitor devices.

• Device Authentication and Security: It offers robust device authentication mechanisms, such as
public key infrastructure (PKI), to ensure the security of device connections.

• Cloud Integration: IoT Core seamlessly integrates with other Google Cloud services, including Google
Cloud Pub/Sub for data ingestion and Google Cloud Functions for serverless processing.

• Horizontal Scalability: Google Cloud IoT Core is designed for horizontal scalability, enabling you to
connect and manage many devices.

• MQTT and HTTP Support: It supports MQTT and HTTP protocols, allowing devices to communicate
with the cloud using standard IoT protocols.

Google Cloud IoT Core can be integrated with Kubernetes and OpenShift for optimized resource
management, scalability, and high availability in containerized environments. Google Cloud IoT Core is
versatile and can be deployed in various environments, including cloud, on-premises, and hybrid settings. Its
adaptability extends to integrating with multiple programming languages and technologies.

5.2.3.3. Azure IoT

Azure IoT is a comprehensive set of managed services by Microsoft for securely connecting, monitoring, and
managing IoT devices. It offers a scalable and flexible platform for building IoT solutions that can be deployed
in various scenarios, including industrial IoT, smart cities, and environmental monitoring. Among the notable
features of Azure IoT are the following:

• Device Management: Azure IoT provides robust device management capabilities, allowing to
register, monitor, and control IoT devices at scale. It offers features like over-the-air updates and
remote device configuration.

• Security: Security is a top priority for Azure IoT. It offers device-to-cloud and cloud-to-device
authentication, role-based access control, and integration with Azure Security Center for threat
detection and prevention.

• Data Ingestion and Processing: Azure IoT seamlessly integrates with Azure services like Azure Stream
Analytics and Azure Functions for data ingestion and processing. This allows to perform real-time
analytics on IoT data.

• Azure IoT Hub: Azure IoT Hub is a core component, serving as the central message hub for bi-
directional communication between IoT applications and devices. It supports protocols like MQTT,
AMQP, and HTTP.

• Azure IoT Edge: Azure IoT Edge extends IoT capabilities to the edge, allowing to run cloud workloads
locally on IoT devices. It's compatible with Kubernetes and OpenShift for containerized deployments.

• Integration with Azure Services: Azure IoT integrates with a wide range of Azure services, including
Azure Machine Learning, Azure Time Series Insights, and Azure Maps, enabling advanced IoT
applications.

Azure IoT is compatible with Kubernetes and OpenShift for containerized deployments and edge computing.
Azure IoT Edge supports these platforms, enabling to run containerized workloads on edge devices. This
integration optimizes resource management and enables scalability in containerized environments.

Azure IoT is versatile and can be deployed in various environments, including cloud, on-premises, and hybrid
settings. Its adaptability extends to integrating with multiple programming languages and frameworks.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 37

5.2.3.4. Spark Works IoT Platform

The Spark Works IoT Platform is a cloud-native flexible and scalable IoT Data Analytics platform that can
handle unbounded streams of data in near-real-time and distribute them to multiple applications and
services as needed. It is built using cloud-native technologies and can be deployed on multiple platforms
ranging from AWS, Azure, and GCP to Docker based orchestrators like Docker Swarm or Kubernetes. The
platform is comprised of different independent components, for data ingestion, transformation, processing,
storage and distribution. Each component can operate on its own or in combination with the rest of the
system. To facilitate communication between the components, all of them expose their functionalities using
properly defined API. The core components of the platform are the following:

• Data Mappers: The Data Mappers are responsible for the conversion of incoming data streams to the
common format used in the rest of the Spark Works IoT Platform. Each Data Mapper is implemented
based on the underlying data sources. The Data Mapper operates receiving messages from the Data
Broker and then reroutes the converted information again to the Data Broker for further processing
and analysis.

• Data Broker: The Data Broker is the contact point for all data sources of the platform. It also acts as
a central hub for the rest of the platform’s components to exchange data. The actual software that
implements this operation can be replaced based on the needs of each deployment. In most cases,
we use the RabbitMQ message broker and the Advanced Message Queuing Protocol (AMQP).

• Data Manipulators: The Data Manipulators are the core components that implement the business
logic of each application deployed in the Spark Works IoT platform. Each manipulator receives data
messages from the Data Broker and generates the analytics needed. Once the required calculations
are computed, the results of the computations are either sent for storage or used to trigger other
actions on external services (e.g., sending notifications to end users).

• Data Storages: The Spark Works IoT Platform can use multiple types of storage engines and databases
to store the results of the raw data received by the data sources, and/or the results of data analysis
performed by the data manipulators.

• IoT Platform API: The Spark Works IoT Platform API is responsible for giving access to the collected
data and their meta information to external services and applications. The API is defined as a RESTful
API, with clients provided multiple development environments.

• WS API: The WebSocket API is used for receiving live feeds of the raw data and the calculated data
analytics. It can be used in application user interfaces for real time and responsive user views.

5.2.4. Edge Operating Systems and Data Agents

5.2.4.1. Spark Works IoT Edge Agent

The Spark Works IoT Edge Agent is an application that can orchestrate IoT devices at the Edges of an IoT
infrastructure and is capable of collecting, filtering and processing collected data or controlling available
actuators autonomously based on the needs of the installed application. The agent is comprised of multiple
components designed for collecting, cleaning, storing, and forwarding data to cloud services or even
processing them at the edges of the network. Some of the components that are already available in the Spark
Works IoT Edge Agent are the following:

• USB Device Monitor: A component for receiving data through a USB connected sensor device. The
component opens a serial connecting and decodes incoming messages into data readings.

• Modbus Device Monitor: A component for connecting to a Modbus interface, either TCP/IP or RTU
and monitor Modbus registers in a Modbus slave device. The collected data can be then converted
to data readings.

• OS Monitor: A component for monitoring critical information for the operating edge device. Required
for collecting information for its operation like the CPU and memory usage, disk usage, or other
related information. Such information is then converted to data readings and can be used in the local
processing or forwarded to the cloud monitoring services.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 38

• Data Manipulator: A component used for processing data locally at the edges of the network. It can
receive either the data generated from a Monitor component, or data generated from other Data
Manipulators.

• Learner: A component used for performing Machine Learning operations at the edge of the network,
like inference, anomaly detection or training in a federated learning environment.

• Buffer: The Buffer is a component designed for storing data readings locally until they can be
forwarded to the cloud if needed.

• Forwarder: The Forwarder is a component for sending the stored data readings (either raw or
processed) to the cloud services of the Spark Works IoT Platform.

All components communicate using a lightweight message exchange interface, in most cases an MQTT server
(usually using Mosquitto MQTT).

The Spark Works IoT Edge Agent can be executed on many edge platforms and environments as it is designed
to be executed using docker containers and lightweight execution environments with limited CPU and
memory requirements. The software is also compatible with the AWS IoT GreenGrass for easier deployment
and device management.

5.2.5. Message Brokers

5.2.5.1. RabbitMQ

RabbitMQ is a highly scalable open-source message broker software that facilitates message queuing
between different components of distributed applications. It acts as an intermediary for processing and
routing messages between sender and receiver applications, providing a reliable and efficient means of
communication in various software architectures. Some of the RabbitMQ key features and components are
the following:

• Message Queues: RabbitMQ utilizes message queues to store and manage messages between
senders and receivers. Messages are stored in queues until they are processed, ensuring reliable
delivery and decoupling of application components.

• Publish-Subscribe Model: RabbitMQ supports the publish-subscribe pattern, allowing multiple
consumers to subscribe to a single message source. This pattern is useful for broadcasting messages
to multiple consumers or for implementing event-driven architectures.

• Exchange: Exchanges in RabbitMQ act as message routing agents. Producers send messages to
exchanges, which then route the messages to one or more queues based on specified rules or
bindings. This provides flexibility in message routing and processing.

• Bindings: Bindings define the relationship between exchanges and queues. They determine how
messages are routed from an exchange to specific queues based on message attributes, headers, or
routing keys.

• AMQP Protocol: RabbitMQ's core technology is the Advanced Message Queuing Protocol (AMQP)
protocol, which defines the format of messages and the rules for communication between the
message broker and clients. This protocol enables compatibility with a wide range of programming
languages and messaging clients.

RabbitMQ is a versatile message broker, functioning as a standalone service suitable for various deployment
scenarios such as cloud environments, on-premises servers, and containers. Its adaptability extends to
integration with multiple programming languages, frameworks, and technologies, making it an excellent
choice for building distributed systems. RabbitMQ is typically deployed centrally to manage messaging in
cloud, on-premises, or hybrid environments, serving as a critical resource for modern software architectures.
Additionally, it seamlessly integrates into containerized environments managed by Kubernetes or OpenShift,
leveraging container orchestration for streamlined resource management, scalability, and high availability in
dynamic and cloud-native settings.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 39

5.2.5.2. Apache Kafka (SPA)

Apache Kafka is a distributed event streaming platform designed for building real-time data pipelines and
streaming applications. It excels in handling high-throughput, fault-tolerant, and scalable data streams,
making it a popular choice for managing and processing large volumes of data in real-time.

Apache Kafka follows the publish-subscribe pattern, where producers publish messages to topics, and
consumers subscribe to these topics for real-time data consumption. It is designed as a distributed system,
enabling horizontal scalability and high availability. Kafka consists of brokers, topics, partitions, and
replication for fault tolerance. Kafka stores data in an immutable, ordered, and partitioned event log,
ensuring durability and allowing consumers to replay and process data at their own pace. Kafka Connect
offers a framework for integrating Kafka with various data sources and sinks, simplifying data ingestion and
egress. Kafka Streams provides a stream processing library for building real-time applications that can
process, transform, and analyze data streams.

Enabling technologies for Kafka include its distributed architecture, log-based storage, extensive integration
ecosystem, and compatibility with container orchestration platforms like Kubernetes and OpenShift, which
offer enhanced resource management and scalability. Kafka is typically deployed as a distributed cluster of
brokers in cloud, on-premises, or hybrid environments, serving as a central data hub for streaming data
between various components. It is valuable for managing data between microservices, building real-time
analytics pipelines, and handling large-scale event-driven applications. When combined with container
orchestration platforms like Kubernetes or OpenShift, Kafka can further optimize its resource utilization and
scalability in containerized environments.

5.2.6. State Manager

The State Manager is an entity which will internally implement a state migration mechanism, applicable to
stateful applications and/or for implementing caching strategies. This mechanism will decide when and
where to migrate the service state by relying on user mobility and edge servers network conditions to
maintain user's experience optimizing resource allocation on edge servers as well. As the user moves away
from its current edge server, the latency will increase causing service interruption and, therefore, affecting
the user’s experience (e.g., downgrading QoS) and the edge server performance. To solve this task, we adopt
a Redis store as the main component, alongside a Reinforcement Learning (RL)-based approach that learns
the optimal migration policy. The State Manager will involve a “trajectory prediction step” prior to running
the RL-based method. More specifically, the following modules are considered:

Figure 12. RL scheme: An agent interacts with the environment making smart actions that maximize reward signals
[34]

• A Redis store: Redis is an in-memory database, which means it stores data in memory. This storage
system allows Redis to deliver high-speed read and write operations, which can be applied in cache
and state management applications.

• Trajectory predictor: In the context of prediction task, we will employ a robust technology stack that
includes Python, PyTorch, TSAI time series prediction library, Weights & Biases (wandb) for

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 40

experiment tracking, and Lightning for streamlined pipelining and prototyping.

• Node selector: The State Manager leverages an RL-based decision algorithm to find the optimal
destination server from the list of servers that are proximal (e.g., k-NNs) to the predicted location of
the user to reduce the migration delay and related cost (e.g., computational). As shown in Figure 12,
RL involves three elements: a) state set 𝑆, b) action set 𝐴 , c) reward signals 𝑟 obtained by action 𝑎 ∈
𝐴 in state 𝑠 ∈ 𝑆.

For the implementation of the RL-based decision mechanism, we will exploit several python libraries that
implement some state-of-the-art algorithms (see Table 2). Here is a list:

• KerasRL: a Deep RL Python library. It implements some state-of-the-art RL algorithms, and seamlessly

integrates with Deep Learning library Keras. Also, it works with OpenAI Gym out of the box.

• Tensorforce: it is one of the best open-source Deep RL libraries built on Google’s Tensorflow

framework. It’s straightforward in its usage and has been designed to be modular component based.

Moreover, the RL algorithms are agnostic to the type and structure of inputs (states/observations)

and outputs (actions/decisions), as well as the interaction with the application environment.

• TFAgents: it is another promising RL library designed to implement, deploy, and test RL algorithms

more easily due to its modular structure and components that can be easily modified and extended.

• MushroomRL: its modularity allows the use of well-known Python libraries for tensor computation

and RL benchmarks providing classical and deep RL algorithms under a common interface in order to

run them without doing too much work.

Table 2. Number of SOTA RL algorithms implemented in each RL library [35].

KerasRL Tensorforce TFAgents MushroomRL

Deep Q-Learning
(DQN) and its
improvements
(Double and
Dueling)

DQN and its
improvements
(Double and
Dueling)

DQN and its
improvements
(Double)

Q-Learning

Deep
Deterministic
Policy Gradient
(DDPG)

 DDPG DDPG DDPG

Continuous DQN
(CDQN or NAF)

Continuous
DQN (CDQN or
NAF)

Twin-Delayed
Deep
Deterministic
policy
gradient (TD3)

TD3

Cross-Entropy
Method (CEM)

Actor Critic (A2C
and A3C)

REINFORCE Fitted Q-
iteration (FQI)

Deep SARSA
(State-action-
reward-state-
action)

Trust Region
Policy
Optimization
(TRPO)

 PPO PPO, TRPO

 Vanilla Policy
Gradient (PG)

Soft Actor
Critic (SAC)

SARSA

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 41

 Proximal Policy
Optimization
(PPO)

 DQN

5.3. Local Management System

In AC3, CECCM has to interact with different LMS to deploy micro-services over the Cloud Edge Continuum
Infrastructure. Each LMS is specific to the underlaying technology and infrastructure. In this section, we will
review some well-known LMS that manage and handle computing and networking infrastructure.

5.3.1. Local Management System for Computing

Over time the technology for cloud native platform evolved from VM based platform (which used to provide
both Infrastructure as a Service (IaaS) and Platform as a Service (PaaS)) into a 2-tier architecture in which the
IaaS is provided using virtualization while the PaaS is using container as its core platform technology. In the
past this technology was used only for Linux workloads (“containers are Linux”) and for non-Linux workloads
virtualization provided PaaS, but today when containers can run VMs in Kubernetes the separation between
virtualization for IaaS and containerization for PaaS is becoming the de-facto standard. In AC3 project, as a
CECC platform, we concentrate on the PaaS layer as we manage workloads along the cloud edge continuum.

5.3.1.1. Container Orchestration

One of the reasons that the containerization technology took control over the PaaS layer is the emergence
of Kubernetes (k8s) as the de-facto standard for containers scaling and orchestration (there are more
reasons) - k8s provides a simple (relative to the problem size), extensible and robust framework for managing
the cluster in a declarative way, making the lives of the cluster managers and developers much easier than
previously. For example, K8s APIs for changing the cluster configuration are simple CLI commands (applying
or modifying YAML file) and do not require any code for executing the APIs (It is possible to call the APIs
programmatically but it is not required). Since k8s has become the de-facto standard for cluster management
and scaling, some additional technologies emerged that use k8s management technology to manage non-
k8s platforms or to imitate k8s in smaller environments (up to single node edge devices). In this section we
introduce some of these technologies.

5.3.1.1.1. Kubernetes

Kubernetes commonly abbreviated K8s, is an open-source container orchestration platform designed to
automate and manage the deployment, scaling, and operation of containerized applications. Google
originally developed it and is now maintained by the Cloud Native Computing Foundation (CNCF) [36].
Kubernetes provides

• Container Orchestration: Kubernetes simplifies the management of containerized applications by
automating tasks such as container deployment, scaling, load balancing, and health monitoring.

• Cluster Management: It organizes containerized applications into clusters, abstracting the
underlying infrastructure to ensure high availability, resilience, and resource optimization.

• Service Discovery and Load Balancing: Kubernetes provides tools for automatic service discovery
and load balancing to ensure that containers can communicate with each other efficiently.

• Self-Healing: Kubernetes monitors the health of containers and, if necessary, automatically restarts
or replaces failed containers to maintain application availability.

• Declarative Configuration: Administrators and developers describe the desired state of an
application using configuration files (YAML), and Kubernetes works to ensure the actual state
matches the desired state.

• Extensibility: Kubernetes is highly extensible, allowing users to add custom resources and controllers
to tailor the platform to their specific needs.

A working Kubernetes deployment is called a cluster, which is a group of hosts running Linux containers. We

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 42

can visualize a Kubernetes cluster as two parts: the control plane and the compute machines or nodes (either
physical or virtual machines). Nodes execute pods, which are composed of containers, and the orchestration
is managed by the control plane.

The control plane is responsible for maintaining the desired cluster state, including which applications are
running and which container images they utilize. This orchestration system integrates various services to
automatically determine the most suitable node for a given task. It decouples work definitions from pods,
ensuring that service requests reach the correct pod, even if it migrates within the cluster or is replaced.
Kubernetes operates on top of an underlying operating system and manages containers within pods
distributed across the cluster nodes.

Figure 13. Kubernetes cluster architecture [37]

5.3.1.1.2. OpenShift

OpenShift is an open-source container orchestration platform which is based on Kubernetes but extends its
capabilities to compose a comprehensive container application platform. OpenShift simplifies deploying,
scaling, and managing applications through container technologies. It encompasses tools and services for the
entire application lifecycle and focuses on creating a developer friendly environment, simplifying the
complexities of containerisation and allowing them to focus on writing code rather than deployment or
scaling procedures.

Core Features:

• Operators are designed to automate the management of complex tasks by utilising Custom Resource
Definitions (CRDs) and they encapsulate application specific knowledge to automate tasks such as
deployment, scaling, and maintenance which improves efficiency and reduces manual intervention.

• DevOps practices can be seamlessly integrated as OpenShift supports CI/CD pipelines, enabling agile
development and release cycles.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 43

• Robust security features are provided such as role-based access control, image scanning, and
network policies which ensure a secure application environment.

• A source to image (S2I) tool is available which allows developers to build and deploy containerised
applications directly from the source code repository, helping streamline the build process.

• Multi-cloud environments are supported, providing flexibility in deploying applications across
multiple cloud providers or on premises machines which provides scalability and redundancy.

5.3.1.1.3. Small form factor Kubernetes

The small form factor Kubernetes platforms are used to manage smaller computing devices by the k8s /
OpenShift control plane. These platforms are usually deployed on the edge and far edge and many times on
a single node (making this edge node a separate cluster from management perspective) - below is a list of
small form factor k8s that might be used in the AC3 project

• K3s

• MicroShift

• Single Node OpenShift (SNO)

K3s:

K3s, is a lightweight, open-source Kubernetes distribution designed for edge and resource-constrained
environments. It is a highly simplified and streamlined version of Kubernetes, which aims to make it easier
to deploy and manage Kubernetes clusters on smaller hardware, IoT devices, or edge computing scenarios.
K3s offers the following technical characteristics:

• Lightweight: K3s has a reduced memory and CPU footprint compared to a standard Kubernetes
distribution, making it suitable for edge devices with limited resources.

• Simplified Installation: K3s provides a straightforward installation process with a single binary, and
it can be deployed on a wide range of Linux distributions, including some specifically tailored for IoT
platforms.

• Bundled Components: K3s includes essential Kubernetes components and dependencies, such as
containerd, CoreDNS, and Flannel, to reduce the complexity of setting up a cluster.

• Security Features: It includes built-in security features, such as automatic transport layer security
(TLS) certificate generation, role-based access control (RBAC), and network policies, to help secure
edge deployments.

• High Availability Options: K3s supports multi-node clusters and high availability configurations to
ensure reliability even in edge environments.

• Simplified Operations: K3s abstracts some of the complexities of Kubernetes, making it more
accessible to users with limited Kubernetes experience.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 44

Figure 14. The difference between K3s server and K3s agent nodes [38]

MicroShift:
MicroShift is a project aimed at exploring how OpenShift and Kubernetes can be optimized for small form
factor and edge computing.

• Features:
o Optimized for Edge: Designed specifically for edge environments, focusing on the specific

needs and constraints of these deployments.
o OpenShift Compatibility: Leverages the capabilities of OpenShift, providing a familiar

environment for users already using OpenShift.
o Resource-Efficient: Focuses on reducing resource usage to run effectively on low-capacity

devices.
Single Node OpenShift (SNO):
SNO is a version of OpenShift designed to run on a single node. While traditional OpenShift clusters have
multiple nodes, SNO brings the capabilities of OpenShift to environments where only a single server or
virtual machine is available.

• Features:
o Compact Cluster: Provides the OpenShift experience in a single-node model, ideal for small,

remote, or edge locations.
o Lower Resource Requirements: Designed to operate with lower compute and memory

resources compared to a standard OpenShift cluster.
o Simplified Management: Eases the complexity of managing a full-scale OpenShift cluster,

suitable for smaller operations or single-use cases.

5.3.1.2. Multi Cluster Manager OCM

Open Cluster Management focuses on simplifying the management of Kubernetes clusters across differing
types of infrastructure such as cloud, on-premises, hybrid cloud, and edge. OCM addresses the challenges of
managing multiple clusters efficiently by providing a comprehensive framework and set of tools for multi-
cluster management. These tools include the following functionality:

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 45

• Cluster lifecycle management: Streamlines the creation of clusters, manages scaling, and
decommissions unnecessary clusters.

• Application Management: The capability to deploy, update, and scale applications in a coordinated
fashion.

• Observability and Monitoring: Provides insights into the health and performance of clusters, enabling
administrators to detect issues, optimise resource usages, and improve reliability.

• Policy and Governance: Defines and enforces security and compliance policies to ensure clusters
adhere to governmental standards.

5.3.1.3. Energy-aware Container Manager EACM

Energy-aware Container Manager is a tool for the resource orchestration of cloud and edge computing
domains that accommodate multiple applications with different SLA requirements. Specifically, it is a
framework based on Deep Reinforcement Learning (DRL), which targets to optimize the domains’ resource
utilization and minimize the energy consumption, while guarantying the applications’ SLAs. EACM contains
the following key components:

• A custom openAI Gym environment: it emulates domains that accommodate multiple applications.

• A DRL agent: It observes the environment’s state (actual resource demand) and takes the appropriate
resource allocation decisions in order to optimize a reward function.

• An innovative reward function: the reward function’s design targets, on the one hand, to minimize
the over-allocation of resources and the energy consumption, and on the other hand, to ensure that
the amount of SLA breach events is acceptable.

5.3.1.4. Kubernetes like Control Plane KCP

KCP goal is to provide a single entry point for managing k8s-like applications across multiple clusters, so while
the user sees a single management plane, the workload can be distributed across multiple clusters and can
be moved between clusters. This is a central feature for managing CECC, where the CECC is composed of
multiple clusters and workload is expected to move between clusters as a feature of the platform.

KCP can be a building block for SaaS service providers who need a massively multi-tenant platform to offer
services to many fully isolated tenants using Kubernetes-native APIs. The KCP API supports standard
Kubernetes types and Custom Resource Definitions (CRDs) for enhanced customisation. It tackles the first
challenge of multi-tenancy through Workspaces, providing full isolation and simplifying cluster creation. KCP
also addresses the issue of managing multiple clusters by introducing a Syncer and Scheduler solution.

Sync Targets and Locations, defined as CRs, enable administrators to group physical clusters and present
them as a unified unit to end-users. KCP's internal schedulers facilitate workload distribution across clusters,
aspiring to treat multiple clusters as a seamless computing resource.

The goal is to be useful to cloud providers as well as enterprise IT departments offering APIs within their
company. KCP provides the following benefits in security and extensibility:

• KCP's architecture inherently supports strong security measures. The isolation between tenants
ensures that data and resources are not inadvertently shared, reducing the risk of data breaches and
helping with compliance of data protection regulations.

• KCP can be tailored to specific organizational needs. Its extensibility allows for the integration of
custom resources and services, enabling organizations to add specific functionalities unique to their
operational requirements.

5.3.1.5. OpenShift Control Plane HyperShift

HyperShift is, to some extent an alternative to KCP that manages Openshift clusters. It is a middleware for
hosting OpenShift control planes at scale that solves for cost and time to provision, as well as portability cross
cloud with a strong separation of concerns between management and workloads.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 46

The ability to create fully compliant OpenShift Container Platform (OCP) clusters is a key feature of HyperShift
and ensures that clusters adhere to defined standards and provide a consistent and reliable environment for
containerised applications while maintaining compatibility with OpenShift and Kubernetes toolchains,
allowing for seamless integration with existing workloads.

Simplification of deployments and management of OpenShift clusters is achieved by emphasizing
compatibility and adherence to industry standards and HyperShift plays a crucial role in optimising resource
utilisation, promoting scalability, and enabling an agile and responsive infrastructure for organisations or
teams leveraging OpenShift technology.

Figure 15. OpenShift vs HyperShift Architecture

5.3.1.6. IONOS Data Center Designer (DCD)
DCD stands as a distinctive instrument designed for the construction and administration of virtual data
centers. The graphical user interface of DCD simplifies the process of configuring data centers, offering an
intuitive approach. Users have the ability to utilize a drag-and-drop mechanism to arrange and configure the
infrastructure components of a data center.

• APIs/Role: As is the case with a physical data center, one can use the DCD to connect various virtual
elements to create a complete hosting infrastructure. The same visual design approach is used to
make any adjustments later. One can log in to the DCD and scale their provisioned infrastructure
capacity on the go. Alternatively, one can set defaults and create new resources when needed
through DCD.

• Core Functionalities: The DCD grants clients the capability to oversee and manipulate a suite of
services offered by IONOS Cloud, which include:

o Virtual Data Centers: Clients can craft, modify, and eliminate entire data centers, establish
interconnections between various VDCs, and customize user accessibility throughout their
organization.

o Dedicated Core Servers: Customers have the facility to configure, suspend, and reboot virtual
instances, which come with adjustable options for storage, CPU, and RAM. These instances
are scalable in accordance with usage demands.

o Block Storage: Clients are empowered to upload, modify, and remove their private images,
or opt for utilizing those provided by IONOS Cloud. They can also generate or preserve
snapshots intended for future instance deployment.

o Networking: Users can allocate and organize static public IP addresses, as well as establish
and configure private and public LANs, inclusive of firewall configurations.

o Basic Features: The service allows the saving and administration of SSH keys, connections
through Remote Console, instance initiation via cloud-init, networking recording through

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 47

flow logs, and the monitoring of instance usage via monitoring software.
• Environment compatibility: As a web application, the DCD is supported by the following browsers:

o Google Chrome™: Version 30+
o Mozilla® Firefox®: Version 28+
o Apple® Safari®: Version 5+
o Opera™: Version 12+
o Microsoft® Internet Explorer®: Version 11 & Edge
o Recommended for using Google Chrome™ and Mozilla® Firefox®.

For more details it is recommend visiting to the official documentation of IONOS DCD [39].

5.3.1.7. IONOS Cloud Developers tool

The developer tool is composed of Cloud APIs, Config Management tools, and Software Development Kits
(SDK).

• Cloud APIs - IONOS Cloud offers Enterprise-grade Infrastructure as a Service (IaaS) solutions that are
manageable through the Cloud API, which serves as an adjunct or a substitute to the browser-based
"Data Center Designer" (DCD) tool. Utilizing uniform concepts and features, both the API and the
DCD provide equivalent robustness and adaptability. They facilitate a wide range of management
operations such as integrating servers, expanding storage volumes, and configuring network settings.
A detailed specification of IONOS Cloud API can be found on the official site [40].

• Config Management tools - Configuration Management tools enable the automation of Virtual Data
Center management and associated infrastructure. Through the utilization of common cloud
libraries, software development kits (SDKs), and application programming interfaces (APIs), DevOps
teams implement these principles of infrastructure automation. They leverage infrastructure as code
to enhance scalability, monitoring, and efficiency. To facilitate direct access to IONOS cloud resources
via remote terminals, IONOS provides a command-line interface tool named IonosCTL. This tool
incorporates the Cobra and Viper libraries to handle commands and configurations. Cobra not only
serves as a library for developing robust command-line interfaces but also as a tool to generate
applications and command files, and it's widely used in numerous Go projects alongside the Viper
library. For more details one can visit the official documentation site [41].

• Software Development Kits - IONOS is offering SDKs for the various cloud services such as – Compute
SDK wraps the Cloud API, DBaaS SDKs (PostgreSQL and MongoDB), Auth SDKs, Certificate Manager
SDKs, Container Registry SDKs, Data Platform SDKs (Managed Stackable Data Platform), Cloud DNS
SDKs, and Logging Service SDKs (where users are able to push and aggregate their system or
application logs). Detailed information can be found at the official documentation site [42].

5.3.1.8. Next Generation of Cloud Server (NGCS) API

NGCS platform has been built with interoperability and flexibility in mind. Every functionality has an API to
allow automation, integration and, in general, a programmatic approach. Specifically, the API is a
programming interface that allows easy access to all functions of the NGCS. This programming interface
follows the RESTful API design. This API uses standard HTTP methods to perform queries and operations and
allows you to integrate the functions of the NGCS into any applications and services.

• APIs/Role:
o Cloud Servers: replicates the actions of the Cloud Panel NGCS. The endpoint depends on the

customer, but methods are the same for all [43].
o Metadata API: allows the customers to access programmatically to the internal configuration

of each single server. This is useful especially to provide scripts that will be launched with the
creation of a new server (using the CloudInit feature) that can make use of variables like IP,
DNS, hostname or internal server id [44].

• Core Functionalities: NGCS allows the customer to both control and manage the following services
provided by Arsys:

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 48

o Cloud Servers: Running over the latest Intel technology with VMWare, deployed in 30
seconds. A Cloud Server composed of three independent resources: CPU/RAM/Disk. It is
possible to resize independently each resource. Advanced options are available like clone
servers, Cloud Init or Metadata API. Cloud Servers work seamlessly with Dedicated Servers
allowing hybrid installations.

o Block Storage: Allowed values are from 1 GB to 1000 GB. It can be resized at any time. It is
possible to attach or detach a Block Storage to a server at any time. Only for Cloud Servers.

o Dedicated Servers: 100% dedicated hardware. Multiple models are available with Intel Xeon
or AMD processors offering a high performance. The dedicated servers support
Virtualization. Also, a recovery mode for troubleshooting purposes is available. In addition,
we offer bandwidth up to 10Gbps and 25Gbps and Network redundancy for top models.
Dedicated Servers work seamlessly with Cloud Servers allowing hybrid installations.

o Shared Storage: It can be attached to several servers at the same time, and it has
read/read&write permissions can be resized at any time. The size can be increased or
decreased (only if there is free space available). The maximum offered is 10TB.

• Images: Apart from creating an image from a server it is possible to import an external one to create
a new server or ISO from it for Cloud Servers. http/https/ftp protocols are supported including main
file-sharing services (Dropbox, OneDrive, S3, and more).

• Firewall Policies: By default, any new server has a firewall policy automatically set depending on the
software installed in the image. IPv4 and IPv6 allowed. Available protocols: TCP, UDP, TCP/UDP,
ICMP, IPSEC, GRE, ANY

• Load Balancers: We offer balanced traffic among servers. It is provided using F5 technology and
allows custom rules per port and advanced configuration.

• Public IPs: IPv4 and IPv6 Public IPs and subnets are supported. Both can be assigned indistinctly to
either Cloud or Dedicated servers and can be exchanged from one server to another. In addition,
reverse DNS for the IPs can be configured.

• Networks, Routing & NAT: Creation of networks with private or public addressing for communicating
the servers and establishing public connection to the Internet. We build dedicated environments to
meet advanced network needs. In addition, other features such as Routing and NAT are offered.

o VPN: NGCS platform offers a secure connection between desktop and servers. SSL and IPSEC
are available. Standard configuration via OpenVPN.

o Monitoring: It works with and without agents. Measures taken are - CPU, RAM, SSD,
Transfer, Ping, Ports responding, Processes running A monitoring center is available to see
graphics with resources from multiple servers unified. Email notifications configured by
customers are available when any of the two thresholds (warning/critical) is reached.

o Backup: Powered by Acronis. Offering the creation of security copies for any device: physical
and virtual servers, workstations, and mobile devices. Two locations available: USA and
Europe

o SSH Keys: Storing a public key in cloud panel is possible, so that it can be used in the servers
during the server provisioning. There are two options to create a key, create a Key Pair and
Import Public Key.

o Basic Features: Logs to check all actions performed with possibility to filter certain
timeframe, User & Roles with the possibility of granular roles to grant access in the panel,
Usages are shown so the resources usage can be measured, Multicurrency and
multilanguage with a Hight availability of 99.9% monthly.

o Security: 2FA, Intrusion Prevention System, DDoS protection, SIEM

• Environment compatibility: As a web application interface provided by the Cloud Panel, the NGCS
platform is compatible with:

o Google Chrome™: Version 30+
o Mozilla® Firefox®: Version 28+
o Apple® Safari®: Version 5+

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 49

o Opera™: Version 12+
o Microsoft® Internet Explorer®: Version 11 & Edge
o Recommended for using Google Chrome™ and Mozilla® Firefox®.

5.3.2. Local Management System for Networking

The Networking layer provides several features and capabilities that are critical for the proper operation of
the CECC. These include, but are not limited to:

• seamless connectivity to services that may be spanning from core cloud to Edge and Far Edge
• expose performance metrics and issues, which in turn allow the CECC and its components, i.e. the AI

LCM, to identify SLA violations or risks and take appropriate actions to adapt the workloads
accordingly, i.e. perform migration, or horizontal scale-in / scale-out

• provide network programmability to the adaptation and federation layer
• efficiently handle spikes and deluge in incoming traffic
• provide security against application level attacks

The remainder of this section examines in depth the State of the Art (SotA) tools and products that will
provide the networking building blocks for the CECC architecture as part of the AC3 project.

5.3.2.1. Virtual application network

Virtual application network (VAN) is a concept which takes the VPN tunneling from the OSI network layer (L3)
which facilitates communication and routing between devices on different networks and moves it to
application layer (L7) which interacts directly with user applications and provides network services to the
user. This reduces the scaling and management challenges of L3 VPNs, since the L7 scaling and management
is a challenge well handled by today's internet-scale applications and infrastructure.

The VAN approach integrates seamlessly into the application lifecycle management. Through technologies
like Helm charts or equivalent tools, VAN becomes an integral part of the application's ecosystem. This not
only simplifies the network structure but also ensures an app-centric focus. The VAN is readily available to
the end app-developer, streamlining the development process and enhancing overall simplicity.

The extension of the VAN exclusively to the application network, rather than the broader L3 network, offers
a significant security advantage. This targeted application-centric security model ensures a higher level of
fool-proofing compared to a conventional L3 tunnel by narrowing the scope to the application layer, the VAN
minimizes potential vulnerabilities and fortifies the overall security.

Considering the context of a federated and occasionally low trust architecture like CECC, the application-
centric VAN emerges as the preferred choice. Setting up a VAN within a CECC framework is notably easier
and preferable to establishing a fully-fledged L3 network. This not only aligns with the specific requirements
and constraints of a federated architecture but also underscores the practicality and efficiency of an app-
centric VAN.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 50

Figure 16. Virtual Application Networks implementation with Skupper [45]

The VAN implementation we have chosen is the Skupper project which aligns with the objectives of our VAN
implementation by offering a scalable solution for application networking in dynamic infrastructures when
at least one cluster is running in Kubernetes. Through high-level abstraction, Skupper reduces the complexity
associated with cross-cluster communication, even in diverse platforms like AWS and GCP and allows for
connections between Kubernetes applications and systems running on bare-metal machines or VMs.

5.3.2.2. L2/3 Virtual Private Network (VPN) for k8s clusters

Submariner bridges the gap between higher level Virtual Application Networks (VANs), typically implemented
with SD-WAN products, and application-level networks, which are anticipated to be implemented with
Submariner in the AC3 project. It provides a VPN implementation of sorts that can connect overlay networks
across different Kubernetes clusters connected to a common public network, without a dependence on a
site-to-site connectivity. Towards this end, Submariner can be used to connect disjoint application clusters
across multiple sites and datacenters, without implicitly forcing a trust relationship between these
datacenters as well.

Submariner provides seamless bridging of networks across disparate Kubernetes clusters and designed to be
CNI (Container Network Interface) agnostic which delivers flexibility in its integration while also supporting
both encrypted and non-encrypted tunnels, catering to security requirements between connected clusters.

Submariner provides advantages with regards to dynamic resource allocation. Its intelligent load balancing
ensures optimised utilisation of resources across connected clusters and its comprehensive traffic
management features empower administrators to prioritise and control the flow of data between clusters
based on predefined policies. This allows for the tailoring of networking configurations based on workload
requirements and operational priorities.

Submariner consists of several main components that work in conjunction to securely connect workloads
across multiple Kubernetes clusters, both on-premises and on public clouds:

• Gateway Engine: manages the secure tunnels to other clusters.

• Route Agent: routes cross-cluster traffic from nodes to the active Gateway Engine.

• Broker: facilitates the exchange of metadata between Gateway Engines enabling them to discover
one another.

• Service Discovery: provides DNS discovery of Services across clusters.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 51

Figure 17. Submariner Architecture

5.3.2.3. NetScaler CPX

NetScaler CPX is the container-based form factor of Cloud Software’s Group industry leading Application
Delivery Controller (ADC). It can be deployed in any environment that provides support for containers,
including but not limited to standalone Docker hosts, Rancher’s K3s lightweight Kubernetes (K8s), public
clouds managed K8s offerings, Redhat’s Openshift and more.

At its core, the NetScaler CPX is an ADC. It is positioned “in front” of applications and intercepts all incoming
traffic.

Figure 18. Overview of an Application Delivery Controller

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 52

This section examines in further depth the Application Delivery features and capabilities that NetScaler CPX
provides to applications and microservices running within the Local Management System (LMS). It should be
noted that deeper integration of CPX with Kubernetes based environments, such as support for service mesh
or sidecar deployments, typically requires the NetScaler Ingress Controller and are considered in the
following section.

Load Balancing

Load balancing is the most basic function of an ADC. Note that while most LMS provide a somewhat basic
load balancing solution, however this is typically insufficient to handle the demands and needs of modern
applications. The reason is that rudimentary load balancing solutions, such as k8s’ kube-proxy, operate at
Layer-4 and provide only basic round-robin load balancing. Lack of visibility into the application layer is a
significant limitation, since it may lead to unequal load balancing, routing of requests to unhealthy origins,
overload of origins and more. As an ADC, NetScaler CPX is a full Layer-7 load balancer and hence alleviates
all of these limitations.

Firstly, NetScaler provides full visibility into the application payload. For encrypted applications, this includes
terminating the TLS connection on the NetScaler, and optionally re-encrypting requests to the origin.

Having access and “understanding” of the actual application payload, NetScaler can apply far more
sophisticated load balancing and application routing. Firstly, it can load balance incoming traffic based on the
actual L7 requests, rather than just the L4 connections. Over time L4 connections are a somewhat good proxy
of the incoming load, however elephant flows or aggressive or malicious clients may send an overly large
number of requests over a single connection and overload a backend origin. By performing load balancing at
a L7, NetScaler ensures a fairer distribution of load across origins and eliminates potential “hot spots” that
would degrade the user experience. Secondly, it can perform more complex load balancing decisions, i.e.
route traffic across different origin sets. A typical historical example has been to route requests for dynamic
content across a certain set of origins, whereas requests for static content (i.e. images, stylesheets, etc.)
across another set of origins. A more modern example is canary distribution, where a number of users, i.e.
based on a Cookie or another L7 request indicator, are routed to a different set of origins that run a newer
microservice / application version, to assess whether said version introduces any issues.

Application performance

By virtue of being a full-fledged application delivery controller, NetScaler can significantly increase
application performance and efficiency.

One such aspect of such improvement is already hinted above. By providing for more fair load balancing at
the application rather than the connection layer, one can avoid hot spots at one or more of the origins.
Reducing hot spots not only improves end-user experience, but can also avoid premature horizontal scale-
out, that would lead to increased utilization of resources.

NetScaler also contributes to improved performance via its multiplexing capabilities. A rudimentary L4 load
balancer will typically map frontend and backend connections in a 1-1 manner. Instead, NetScaler only
maintains and reuses a small pool of connections with each origin. Over this small pool of connections it can
route L7 traffic from an arbitrarily large number of clients. This not only improves the performance of the
origin. It also leads to more predictable utilization, since the performance of the origin becomes a somewhat
linear function of the application load. In addition, it indirectly improves the utilization of the underlying LMS,
reducing the application cost and improving the density of applications that the infrastructure can hold.

Finally, NetScaler can improve application performance via its more sophisticated server monitoring and load
balancing capabilities. Server monitoring can expose deeper insights about the origin status compared to the
simple [un]healthy/[not]ready that k8s applications provide, including but not limited to more complex
health checks, app response time, bandwidth utilization, concurrent requests, application overload and
additional application metrics and insights. These can be leveraged to perform more sophisticated load

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 53

balancing algorithms and allow for more fair and more efficient load balancing, which implicitly leads to
improved application performance and application utilization.

Application security

Being positioned as the entry point to an application and having full visibility of the application payload,
enables NetScaler CPX to address and mitigate threats and vulnerabilities. Threat and attack mitigation
typically consists of the following:

• Implementing basic Layer-3 allows and/or deny lists, so as to limit application exposure only to
trusted clients.

• Improve encryption security posture, thanks to advanced TLS termination capabilities such as TLS 1.3
support, HTTP Strict Transport Security (commonly known as HSTS), OCSP stapling to provide for
certificate revocation and TLS session reuse and ticket, which reduce the impact of TLS encryption
while not compromising on security.

• Enforce client authentication
• L4 protection, against TCP spoofing attacks
• Basic Layer-7 allow and/or deny lists, so as to limit application exposure only to well-defined routing

endpoints
• Rate-limiting, so as to protect origin servers from a Denial of Service attack, or simply a temporary

spike in traffic that it cannot handle until it can scale out horizontally
• Web Application firewall, with the NetScaler inspecting in depth both packet and application headers

and payloads for potentially malicious requests, like SQL injection, cross-site scripting or payloads
matching an attacks’ signature database, and automatically flagging and/or dropping such malicious
requests.

Note that for most of its capabilities NetScaler CPX can be configured to operate in a positive or a negative
security model. In the latter, more traditional configuration, all traffic is allowed except one that matches a
deny rule. In the former, more secure and strict model, all traffic is dropped by default, except one that
matches an allow rule.

Application insights

NetScaler CPX can provide extremely rich application insights. At a high level, application insights can be
broken into three broad categories:

1. Events: these are one-off “signals”. They may correspond to an event, i.e. an origin server came
offline or back online, an application threshold was crossed, an anomaly was detected, a security
violation matching a specific signature was identified, etc.

2. Time series data (Metrics): metrics are exported periodically (typically every few seconds) and
provide aggregate stats on a per application and per-origin level. Typically for each metric three
values are exported, total, delta (since last report) and rate (per second). These metrics can include,
but are not limited to, application requests, successful requests, errors, per error metrics (different
counters for 4xx and 5xx errors), throughput, L4 connections and more. Note that NetScaler exposes
more than 3,000 entity-level and more than 15,000 system level counters, hence an extensive
treatise is beyond the scope of this document.

3. Transaction logs: one or more transaction logs may be generated per application request. These logs
include tens of fields, with L2-L7 details, such as incoming network interface, source and destination
IP addresses and UDP/TCP ports, TLS version and cipher groups utilized, URL details (application
FQDN, path, query string parameters), detailed timings (time to establish connection, time to first
byte, time to retrieve content, connection duration) and more.

The NetScaler CPX is agnostic of how these insights will be utilized. Typical use cases include, but are not
limited to, application monitoring, lifecycle management, reporting and auditing. The NetScaler observability
exporter, outlined below, supports ingesting the aforementioned insights to popular monitoring and
observability tools. As part of the CECC architecture implemented in AC3, it is expected that application

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 54

insights will be ingested into the “Application and Resources Management” Layer to allow for the following
main two functions:

• App developers to monitor Key Performance Indicators of their application

The lifecycle management module to verify that the applications’ SLA is being met, anticipate potential
upcoming SLA violations and make appropriate lifecycle decisions if and as needed

5.3.2.4. NetScaler ingress controller for Kubernetes

While NetScaler is a powerful application delivery controller in all its form factors, including the CPX
containerized form factor. However, its deployment and configuration can be quite cumbersome, even for a
seasoned network admin. Deployment and configuration becomes even more complex in a Kubernetes (k8s)
based environment, where all elements of an application, including but not limited to ingress load balancing,
ingress security rules, encryption settings, external IP address and FQDN allocation and more, application
routing rules are defined in a single “application deployment” file of sorts, and stored as a desired state
configuration in the k8s control plane, without an option of independently deploying and configuring
independent containers.

The NetScaler ingress controller offers seamless integration of NetScaler CPX in such environments. The
following diagram provides an overview of k8s ingress:

Figure 19. Kubernetes Ingress Overview

• Ingress is basically a k8s resource that allows one to define rules to access applications from outside

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 55

the cluster and stores the desired state configuration of these rules.
• Ingress controller is a microservice application that converts said rules into an appropriate load

balancing configuration.
• Ingress device is a load balancing application implementation, such as NetScaler CPX.

The NetScaler Ingress Controller is essentially a microservice that communicates with the Kubernetes control
plane API and monitors Ingress objects. In case it identifies a new Ingress object that requires a NetScaler
CPX, instead of the default or another vendor’s CRD, it spins up a new CPX instance for the respective k8s
service. It also monitors for Ingress objects changes, such as modifications to update the respective CPX
instance configuration or deletions to remove the associated CPX instance.

The advanced capabilities of NetScaler CPX were outlined extensively in the previous section. The remainder
of this section focuses on how NetScaler Ingress Controller allows for easier integration of CPX in Kubernetes
environments and integration with applications running in such environments.

Supported environments

NetScaler Ingress Controller provides support for all k8s environments on bare-metal or self-hosted on public
clouds. It’s also been verified to work with all major public clouds managed k8s offerings (Google GKE, AWS
EKS, Azure AKS), Google Anthos, Red Hat Openshift, Pivotal Container Service, VMWare Tanzu and more. It
is expected to properly integrate with any LMS that provides a k8s compatible API and functionality.

The NetScaler Ingress Controller can be deployed in a number of ways to the target k8s environments listed
above, including but not limited to YAML and the kubectl k8s management tool, Helm charts, and Kubernetes
Operations (kops).

Features and use cases

The NetScaler Ingress controller supports integration with the k8s environment to automatically deploy CPX
instances to handle a variety of use cases.

• Microservice horizontal scaling: in case the CECC lifecycle manager takes any action that affects the
state of an application and its respective microservices, Ingress Controller automatically updates the
CPX configuration to reflect this change. This includes, but is not limited to scenarios like the
following:

• Horizontal scale-out to handle increasing load: CPX is appropriately updated to steer traffic
to new instances of the microservice, and quickly mitigates the impact that the increase
would have

• Scale-in, to reduce resource utilization in case of decreasing load: CPX is appropriately
updated to stop steering traffic to now invalid instances of the microservice

• App or microservice migration (due to SLA miss, preference for green datacenter, etc.): this
is equivalent to a combination of scale-out and scale-in event, in that the old origin needs to
be removed from the CPX’ load balancing pool and the new origin added

• North-South traffic: the most typical use case is to insert NetScaler CPX as a replacement to the
standard ingress proxy offered by Kubernetes. This allows the application administrator to leverage
the advanced capabilities outlined in the section above, inserting the NetScaler as an entry point for
incoming traffic. Communication between microservices, typically known as East-West traffic, is still
being handled by native k8s offerings.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 56

Figure 20. Kubernetes north-south traffic distribution with NetScaler CPX

• East-West traffic: commonly known as “service mesh”, Ingress Controller allows inserting the
NetScaler CPX in a manner that intercepts not only incoming traffic from the internet, but also
microservice-to-microservice traffic. This exposes NetScaler capabilities like mutual TLS and SSL
offload, HTTP content based routing and filtering, advanced load balancing and rich application
insights not only to outside-in traffic but also traffic between microservices. This capability is more
critical for modern applications, that are typically composed of multiple tiers, with only a single
“frontend” tier being exposed to the internet.

Figure 21. Kubernetes East-West traffic distribution with NetScaler CPX

• Openshift integration: NetScaler Ingress Controller supports all basic OpenShift router types for
North-South traffic patterns, namely unsecured routes (unencrypted), edge termination (traffic to
internet encrypted by CPX, internal traffic unencrypted), re-encryption (CPX terminates and re-
encrypts traffic to internal microservices) and passthrough.

• Canary deployments: the Ingress Controller stitches together all components of continuous
deployment to make canary deployment easier for developers, namely Spinnaker for CD, Kayenta as
a plugin to perform statistical analysis of application metrics from the canary pods and Prometheus
as the source of the metrics.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 57

Figure 22. Canary Deployment of microservices in Kubernetes with NetScaler, Kayent and Spinnaker

• Support for most NetScaler CPX features: most critical NetScaler features for microservices can be
implemented using Kubernetes configuration annotations and applied by the Ingress controller,
including but not limited to HTTP, TCP and TLS settings, TLS certificate support, support for HTTP
content routing, IP address and DNS record management and more.

5.3.2.5. NetScaler Observability Exporter

As outlined in section 5.3.2.3, NetScaler CPX provides rich application insights, in the form of events, metrics
and transactions. NetScaler observability exporter consumes metrics and transaction logs from the NetScaler
CPX instances deployed within the Kubernetes cluster. It then integrates with one or more external
observability solutions to export said metrics and transaction records.

A typical deployment is illustrated below:

• One or more NetScaler CPX containers push transaction records to the NetScaler observability
exporter

• The observability exporter converts said records to a JSON format suitable to Elasticsearch and
ingests them using the appropriate protocol

Figure 23. Citrix Observability Exporter architecture

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 58

The Observability exporter supports the following:

• Elasticsearch, Kafka and Splunk enterprise for ingestion of structured transaction logs
• Prometheus and Grafana for ingestion of time series data (metrics)
• Zipkin, for ingestion of Opentelemetry trace logs

5.3.2.6. NetScaler service graph and ADM service (CTX)

NetScaler Application Delivery management service graph provides an end-to-end holistic view of
microservices applications running within a Kubernetes cluster. Through a single pane of glass, the
application admin can quickly identify:

• If the application operates properly or not, either at this moment or at a specific time window in the
past

• If not, which of the microservices involved are problematic
• Identify the nature of the problem, i.e. errors, latency / response time issues or both
• View detailed statistics for the faulty microservices

The service graph is of most value when NetScaler CPX is deployed as a service mesh, intercepting both north-
south traffic, as well as traffic between microservices.

Figure 24. NetScaler App Delivery Management Service Graph

Having a holistic view of the application, the app admin can then easily “focus” on the offending microservices
and proceed to appropriate further actions, i.e.

• identify when the problem started occurring and potentially correlate (using an observability
platform) it with potential changes to the application or the infrastructure

• assess the severity / impact of the problem, i.e. what percentage of requests were affected and over
what time period, what was the latency and response time increase compared to the baseline

• triage the issue to specific microservices and potentially specific root causes, i.e. increase in traffic
above a threshold

• consider potential remediations, etc.

5.3.2.7. EveryWAN

EveryWAN is a flexible and open-source Software Defined Wide Area Network (SD-WAN) solution.
EveryWAN's architecture aims to simplify the management and operation of wide area networks by

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 59

decoupling networking hardware from its control programs and using software and open APIs to abstract the
infrastructure, manage connectivity, and deliver services. EveryWAN offers flexibility in choosing WAN
connections, making it possible to leverage various transport services, including low-cost broadband, MPLS,
LTE/5G, and broadband internet services. The architecture is designed to be highly adaptable to different
needs, supporting various network behaviors and routing approaches.

EveryWAN adopts an approach in which traditional IP protocols coexist seamlessly with a SouthBound (SB)
interface in the edge device to configure it. The SD-WAN edge device architecture combines Programmable
IP Forwarding Engine (P-IPFE), an IP routing daemon (IPRE) and a Southbound API (SB API), enabling
coexistence between traditional routing like BGP and programmable routing. Edge devices can be deployed
on any server with computing, storage and networking capabilities, to replace CE equipment.

Both the Controller’s Northbound and Southbound APIs are implemented using gRPC protocol. The agent at
the SD-WAN controller (also called EverEdgeOS) processes the Northbound API request and, depending on
the type of message sent by the orchestrator, forwards it to the appropriate manager, e.g. if the request
concerns the creation of an Overlay network, it forwards the request to the Overlay-Manager. The
Orchestrator exposes the SD-WAN functionalities as a REST API. Both the EverEdgeOS controller and
EverEdge devices require a Unix-based system and are developed using Python and uses different libraries
to communicate with the linux kernel.

It employs a Zero Touch Provisioning (ZTP) to facilitate various functions, including the download of the
routing daemon's bootstrap configuration and device authentication with the controller. Additionally.

EveyWAN can be used in the context of the CECC for: - Optimizing the WAN connectivity between CECC sites.
- Load-balancing between different overlay connections - Dynamically adapt application traffic (could be
classified depending on parameters defined by the CECM) to maximize SLA satisfaction. - Monitor the overlay
infrastructure of the CECC.

5.3.2.8. FlexiWAN

FlexiWAN is another open-source Software Defined Wide Area Network and Secure access service edge
(SASE) solution. It aims to provide an open architecture, vendor-agnostic approach to SD-WAN, unleashing
the power of flexibility and control for enterprises and service providers.

Key features of FlexiWAN include an auto full-mesh and hub & spoke tunnel creation for selected devices,
zero-touch provisioning, automatic detection and failover for multiple WAN connections, load balancing
across multiple tunnels, automated deployment behind NAT setups, constant monitoring with automatic
issue correction, and multi-tenant management options.

From a technical architecture perspective, FlexiWAN consists of a software-based edge device called
flexiEdge and a central management system, flexiManage. FlexiEdge is composed of router infrastructure
using FD.io VPP, a routing control plane based on Free Range Routing, and the FlexiWAN Agent for secure
communication with the management plane. FlexiManage operates on a scalable web server, facilitating
network management, device and network statistics collection, and providing updates. However, it lacks
support for Virtual Routing and Forwarding (VRF) and does not provide network analytics or flow telemetry.

FlexiWAN can be used in the context of the CECC for:

• Load-balancing between multiple tunnels

• Monitor the overlay infrastructure of the CECC.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 60

6. Gap Analysis

After reviewing the existing tools in Section 4 and Section 5 and establishing the link with the AC3 architecture
components, this section analyses the gap in terms of missing tools to implement the CECCM components.
The missing tools will be implemented in WP3 and WP4. A summary of the tools and gaps in the architecture
is provided in Table 3.

Table 3. Summary of the technological tools

Architecture

plane

Architectural

component
Available technological tools

User Plane

Application Gateway

- EURECOM’s web portal:
o User Interface
o NST - Application Descriptor
o Allow to specify the application

instantiation order
o Allow the configuration of service CM, IN ...
o Visualisation of KPIs and metrics

- MAESTRO SO – front-end interface:
o User Interface
o Application graph for communication

between applications
o Dashboard on resources usage

- Gaps:
o Lack of Analytics

Service Catalogue

- Data catalogue:
o IDS Metadata Broker
o XFSC Catalogue
o EDC Catalogue
o Piveau Catalogue

- Deployment Catalogue:
o Databases used to store the application

descriptors.
- Gaps:

o No unified view on applications blueprints,
software, ML models and Data. (Need for
interface design for the service catalogue)

o No catalogues for software and blueprint of
micro-service-based applications.

Ontology & Sematic
aware Reasoner

- Ontology editors:
o Protégé
o Web Protégé

- Semantic Reasoners:
o Pellet
o HermiT
o Fact++
o RecerPro

- Frameworks to manage ontologies:
o Apache Jena

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 61

o OntoStudio
- Gaps:

o Knowledge base for reasoning techniques
need to be provided or constructed.

Management

Plane

App & Resources Mgmt

- EURECOM’s CLiSO:
o Multi cloud management
o Supports different cloud management

technologies: Kubernetes, Openshift, K3s
o Resources allocation, and check available

resources
o Update service
o Monitoring of metrics and logs

- MAESTRO:
o Translation of SLA and resources

requirements to intent
o Select the network and deployment

location based on the SLA
o Provide monitoring of resources usage

- Gaps:
o Limited AI based resources management
o No models for profiling applications and

resources.

Monitoring

- EURECOM’s monitoring:
o Provide a scalable data pipeline for metrics

collection
o The monitoring systems covers the

collection of network, infrastructure and
application’s metrics

- Gaps:
o Need to be adapted to fit AC3 purpose in

order to collect also data produced by the
applications

Data Management

- Spark Work’s IoT Platform
- Spark Works IoT Edge Agent
- Cloud based solutions:

o Azur IoT
o Google Cloud IoT Core
o AWS IoT Core & GreenGrass

- Gaps:
o How to include all the solutions in one

system
o How to provide applications with access to

the Data

Adaptation and
Federation Layer

- EURECOM’s CLiSO
o Interacts with different LMS using the

notion of plug-in that uses the LMS NBI

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 62

o Provide the functionalities of the
adaptation agents and adaptation gateway

- MAESTRO:
o integrated with Kubernetes LMS
o Can provide functionalities of adaptation

agent for Kubernetes based LMS
- Gaps:

o Resource Broker functionality is not fully
provided by the proposed solutions.

o Resources Discovery over a federated
infrastructure using the NIST CFRA model is
not implemented by the tools.

Infrastructure

or CECC plane

LMS for computing

- Several types of LMS available:
o Kubernetes
o Openshift
o K3s, microshift, SNO

- Vendor specific tools:
o IONOS Data Center Designer
o IONOS Cloud Developers
o Next Generation of Cloud Server

- Gaps:
o Need a Unified interface for monitoring

information exposure.

LMS for networking

- Networking solutions:
o VAN
o L2/3 VPN
o NetScaler CPX
o Netscaler Ingres controller
o Netscaler Observability Exporter
o EveryWAN, FlexiWAN SDN controllers

Based on the analysis of the technological tools and their functionalities we conclude the following:

• There need to be an Integration of the deployment and data catalogues to provide a unified view of
software, services, ml models and datasets, this view can be provided by designing a common
interface for the Service Catalogue.

• The applications LCM orchestrators proposed does not provide AI solutions for applications and
resources management. Thus, the machine learning modules should be implemented in the project
including the application and resources profilers.

• The proposed User Interfaces that can be used to implement the application gateway do not include
data analytics, and the visualisations that they provide are mainly about resources usage and not the
data generated by data sources, applications and IoT Devices.

• For data management, the project needs to provide a method to access the data flow of hot and cold
data sources from the deployed applications by CECCM.

• For Ontology & Semantic aware reasoning, the proposed tools allow the ontology editing. Therefore,
the custom solutions for applications and resources management need to be implemented, and a
knowledge base for reasoning techniques need to be either built and provided to the reasoner or
there should be an implementation of models to construct this knowledge base.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 63

• The solutions provided as Local Management Systems for computing and networking cover all the
technological requirements needed to manage services over the CECC infrastructure. However, in
order to manage those infrastructures via the CECCM, AC3 should provide solutions and integration
APIs for cloud federation management following the IEEE SIIF implementation of the NIST CFRA.
These solutions include: The resources broker and the selections algorithm to choose the
infrastructure where to deploy a service; The resources discovery module that collects information
about the federated resources.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 64

7. Conclusion
In this deliverable, D2.3, we have presented a comprehensive overview of the essential technological tools

for the CECC (Cloud Edge Computing Continuum) architecture, and particularly for the CECCM within the AC3

(Agile and Cognitive Cloud-edge Continuum management) project. These tools have been meticulously

assessed, considering their roles, compatibility with the AC3 architecture, and feasibility of adaptation.

These tools are pivotal components that underpin the CECC framework's functionality and its ability to

manage cloud-edge resources effectively. This document, related to task T2.3, has also provided an initial

glimpse of how these tools will be integrated into the AC3 CECCM (CECC Management) architecture, setting

the stage for future development and refinement.

These technological tools are not static components but integral building blocks of the CECC framework,

designed to enhance its functionality, adaptability, and performance. Moreover, this deliverable analyzed

the gaps that require adaptation and the development of new components to lay the groundwork for the

initial end-to-end integration of these tools into the CECCM architecture.

In summary, this deliverable is a key reference for WPs 3 and 4 for the implementation of the different

building blocks of the AC3 architecture avoiding implementing them from zero. Furthermore, the output of

this deliverable will ease the integration process of the different functional blocks of the architecture in WP5.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 65

References

[1] "S. Arora, K. Boutiba, M. Mekki and A. Ksentini, "A 5G Facility for Trialing and Testing Vertical Services
and Applications," in IEEE Internet of Things Magazine, vol. 5, no. 4, pp. 150-155, December 2022, doi:
10.1109/IOTM.001.2200206".

[2] "S. Arora, A. Ksentini and C. Bonnet, "Lightweight edge Slice Orchestration Framework," ICC 2022 - IEEE
International Conference on Communications, Seoul, Korea, Republic of, 2022, pp. 865-870, doi:
10.1109/ICC45855.2022.9838854.".

[3] "Network Functions Virtualisation (NFV) Release 4; Management and Orchestration; VNF Descriptor
and Packaging Specification".

[4] "protégé," [Online]. Available: https://protege.stanford.edu/.

[5] "WebProtégé," [Online]. Available: https://webprotege.stanford.edu/.

[6] "Apache Jena," [Online]. Available: https://jena.apache.org/.

[7] "OntoStudio," Semantic Web Standards - World Wide Web Consortium (W3C), [Online]. Available:
https://www.w3.org/2001/sw/wiki/OntoStudio.

[8] E. P. B. G. B. C. K. A. &. K. Y. Sirin, "Pellet: A practical OWL-DL reasoner," Journal of Web Semantics, pp.
5(2), 51–53. https://doi.org/10.1016/j.websem.2007.03.004, 2007.

[9] B. H. I. M. B. S. G. &. W. Z. Glimm, "HerMiT: an OWL 2 reasoner.," Journal of Automated Reasoning,
53(3), 245–269., no. https://doi.org/10.1007/s10817-014-9305-1, 2014.

[10] D. &. H. I. Tsarkov, "FACT++ Description Logic Reasoner: System description," in In Lecture Notes in
Computer Science (pp. 292–297), https://doi.org/10.1007/11814771_26, 2006.

[11] V. &. M. R. Haarslev, "Racer: A Core Inference Engine for the Semantic Web. Ontology-based Tools,"
http://ceur-ws.org/Vol-87/EON2003_Haarslev.pdf, 2003.

[12] H. Lan, "SWRL : A semantic Web rule language combining OWL and ruleML," W3C Member Submission.
https://ci.nii.ac.jp/naid/10028232353, 2004.

[13] M. &. B. H. Kifer, "RIF Overview (Second Edition)," W3C Working Group Note.
https://www.w3.org/2013/pdf/NOTE-rif-overview-20130205.pdf, 2013.

[14] "IDS Whitepaper," [Online]. Available: https://github.com/International-Data-Spaces-Association/IDS-
RAM_4_0/tree/main.

[15] "GXFS catalogue," [Online]. Available: https://gaia-x.gitlab.io/data-infrastructure-federation-
services/cat/architecture-document/architecture/catalogue-architecture.html.

[16] "XFSC repository," [Online]. Available: https://gitlab.eclipse.org/eclipse/xfsc/cat/fc-service.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 66

[17] "GXFS Specs," [Online]. Available: https://www.gxfs.eu/download/1740/.

[18] "IONOS gx catalogue repository," [Online]. Available: https://github.com/Digital-Ecosystems/gx-
catalogue-ionos.

[19] "eclipse respositories," [Online]. Available: https://github.com/eclipse-edc.

[20] "piveau," [Online]. Available: https://www.piveau.de/en/.

[21] "DCAT," [Online]. Available: https://joinup.ec.europa.eu/collection/semantic-interoperability-
community-semic/solution/dcat-application-profile-data-portals-europe/release/11. [Accessed 2023].

[22] "piveau doc," [Online]. Available: https://doc.piveau.eu/general/introduction/.

[23] "Grafana," [Online]. Available: https://grafana.com/.

[24] "Kibana," [Online]. Available: https://www.elastic.co/kibana.

[25] "FluentD," [Online]. Available: https://www.fluentd.org/.

[26] "Elasticsearch," [Online]. Available: https://www.elastic.co/elasticsearch.

[27] "IDSA website," [Online]. Available: https://docs.internationaldataspaces.org/ids-
knowledgebase/v/ids-ram-4/layers-of-the-reference-architecture-model/3-layers-of-the-reference-
architecture-model/3_5_0_system_layer/3_5_2_ids_connector#ids-connector.

[28] "EDC website," [Online]. Available: https://eclipse-edc.github.io/docs/#/.

[29] "EDC Repository," [Online]. Available: https://github.com/eclipse-edc.

[30] "EDC IONOS extension," [Online]. Available: https://github.com/ionos-cloud/edc-ionos-s3. [Accessed
2023].

[31] "IDSA," [Online]. Available: https://docs.internationaldataspaces.org/ids-knowledgebase/v/ids-ram-
4/perspectives-of-the-reference-architecture-
model/4_perspectives/4_1_security_perspective/4_1_2_identity_and_trust_management.

[32] "GXFS," [Online]. Available: https://www.gxfs.eu/set-of-services/.

[33] "XFSC," [Online]. Available: https://projects.eclipse.org/projects/technology.xfsc/reviews/creation-
review.

[34] "RL overview," [Online]. Available: https://lilianweng.github.io/posts/2018-02-19-rl-overview/.

[35] "RL tools," [Online]. Available: https://neptune.ai/blog/the-best-tools-for-reinforcement-learning-in-
python .

[36] "CNCF," [Online]. Available: https://www.cncf.io/.

D2.3. Report on technological tools for CECC

© AC3 2023 Page | 67

[37] "Kubernetes architecture," [Online]. Available: https://kubernetes.io/docs/concepts/architecture/.

[38] "K3s," [Online]. Available: https://k3s.io/.

[39] "IONOS DCD doc," [Online]. Available: https://docs.ionos.com/cloud/getting-started/data-center-
designer.

[40] "IONOS Cloud API doc," [Online]. Available: https://api.ionos.com/docs/cloud/v6/.

[41] "Config management tools," [Online]. Available: https://docs.ionos.com/reference/config-
management-tools/config-management-tools.

[42] "IONOS SDK," [Online]. Available: https://docs.ionos.com/reference/software-development-kits/sdk-
bundles.

[43] "Cloudbuilder API doc," [Online]. Available:
https://api.cloudbuilder.es/documentation/v1/en/api/documentation.html.

[44] "Cloudbuilder metadata API doc," [Online]. Available:
https://api.cloudbuilder.es/documentation/v1/en/metadata_api/documentation.html.

[45] "TCP/IP vs VAN Addressing," [Online]. Available: https://itnext.io/virtual-application-networks-van-for-
multi-cloud-multi-cluster-and-cloud-edge-interconnect-1f63a8081f41.

